Harshithtd commited on
Commit
bb7f5b6
·
verified ·
1 Parent(s): 409bde7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -21
app.py CHANGED
@@ -6,7 +6,6 @@ import gradio as gr
6
  from PIL import Image
7
  from transformers import AutoImageProcessor, AutoModelForObjectDetection
8
  import supervision as sv
9
- import spaces
10
 
11
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
 
@@ -18,28 +17,21 @@ MASK_ANNOTATOR = sv.MaskAnnotator()
18
  LABEL_ANNOTATOR = sv.LabelAnnotator()
19
  TRACKER = sv.ByteTrack()
20
 
21
- def annotate_image(
22
- input_image,
23
- detections,
24
- labels
25
- ) -> np.ndarray:
26
  output_image = MASK_ANNOTATOR.annotate(input_image, detections)
27
  output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
28
  output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
29
  return output_image
30
 
31
- def process_image(
32
- input_image,
33
- confidence_threshold,
34
- ):
35
- results = query(input_image, confidence_threshold)
36
  detections = sv.Detections.from_transformers(results[0])
37
  detections = TRACKER.update_with_detections(detections)
38
  final_labels = [model.config.id2label[label] for label in detections.class_id.tolist()]
39
  output_image = annotate_image(input_image, detections, final_labels)
40
- return output_image
41
 
42
- def query(image, confidence_threshold):
43
  inputs = processor(images=image, return_tensors="pt").to(device)
44
  with torch.no_grad():
45
  outputs = model(**inputs)
@@ -48,19 +40,22 @@ def query(image, confidence_threshold):
48
  return results
49
 
50
  def run_demo():
51
- input_image = gr.inputs.Image(label="Input Image")
52
- conf = gr.inputs.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, value=0.6, step=0.05)
53
- output_image = gr.outputs.Image(label="Output Image")
 
54
 
55
  def process_and_display(input_image, conf):
56
- output_img = process_image(input_image, conf)
57
- return output_img
58
 
59
  gr.Interface(
60
  fn=process_and_display,
61
  inputs=[input_image, conf],
62
- outputs=output_image,
63
  title="Real Time Object Detection with RT-DETR",
64
- description="This Demo uses RT-DETR for object detection in images. Adjust the confidence threshold to see different results.",
65
- capture_session=True,
66
  ).launch()
 
 
 
 
6
  from PIL import Image
7
  from transformers import AutoImageProcessor, AutoModelForObjectDetection
8
  import supervision as sv
 
9
 
10
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11
 
 
17
  LABEL_ANNOTATOR = sv.LabelAnnotator()
18
  TRACKER = sv.ByteTrack()
19
 
20
+ def annotate_image(input_image: np.ndarray, detections, labels: List[str]) -> np.ndarray:
 
 
 
 
21
  output_image = MASK_ANNOTATOR.annotate(input_image, detections)
22
  output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
23
  output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
24
  return output_image
25
 
26
+ def process_image(input_image: np.ndarray, confidence_threshold: float):
27
+ results = query(Image.fromarray(input_image), confidence_threshold)
 
 
 
28
  detections = sv.Detections.from_transformers(results[0])
29
  detections = TRACKER.update_with_detections(detections)
30
  final_labels = [model.config.id2label[label] for label in detections.class_id.tolist()]
31
  output_image = annotate_image(input_image, detections, final_labels)
32
+ return output_image, ", ".join(final_labels)
33
 
34
+ def query(image: Image.Image, confidence_threshold: float):
35
  inputs = processor(images=image, return_tensors="pt").to(device)
36
  with torch.no_grad():
37
  outputs = model(**inputs)
 
40
  return results
41
 
42
  def run_demo():
43
+ input_image = gr.Image(label="Input Image", type="numpy")
44
+ conf = gr.Slider(label="Confidence Threshold", minimum=0.1, maximum=1.0, value=0.6, step=0.05)
45
+ output_image = gr.Image(label="Output Image", type="numpy")
46
+ output_text = gr.Textbox(label="Detected Classes")
47
 
48
  def process_and_display(input_image, conf):
49
+ output_img, detected_classes = process_image(input_image, conf)
50
+ return output_img, detected_classes
51
 
52
  gr.Interface(
53
  fn=process_and_display,
54
  inputs=[input_image, conf],
55
+ outputs=[output_image, output_text],
56
  title="Real Time Object Detection with RT-DETR",
57
+ description="This demo uses RT-DETR for object detection in images. Adjust the confidence threshold to see different results.",
 
58
  ).launch()
59
+
60
+ if __name__ == "__main__":
61
+ run_demo()