Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
2 |
+
from PIL import Image
|
3 |
+
import torch
|
4 |
+
from threading import Thread
|
5 |
+
import gradio as gr
|
6 |
+
from gradio import FileData
|
7 |
+
import time
|
8 |
+
import spaces
|
9 |
+
|
10 |
+
ckpt = "meta-llama/Llama-3.2-11B-Vision-Instruct"
|
11 |
+
# Load model to CPU by default
|
12 |
+
model = MllamaForConditionalGeneration.from_pretrained(ckpt, torch_dtype=torch.bfloat16)
|
13 |
+
processor = AutoProcessor.from_pretrained(ckpt)
|
14 |
+
|
15 |
+
@spaces.CPU
|
16 |
+
def bot_streaming(message, history, max_new_tokens=250):
|
17 |
+
|
18 |
+
txt = message["text"]
|
19 |
+
ext_buffer = f"{txt}"
|
20 |
+
|
21 |
+
messages = []
|
22 |
+
images = []
|
23 |
+
|
24 |
+
for i, msg in enumerate(history):
|
25 |
+
if isinstance(msg[0], tuple):
|
26 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": history[i+1][0]}, {"type": "image"}]})
|
27 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": history[i+1][1]}]})
|
28 |
+
images.append(Image.open(msg[0][0]).convert("RGB"))
|
29 |
+
elif isinstance(history[i-1], tuple) and isinstance(msg[0], str):
|
30 |
+
pass
|
31 |
+
elif isinstance(history[i-1][0], str) and isinstance(msg[0], str):
|
32 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": msg[0]}]})
|
33 |
+
messages.append({"role": "assistant", "content": [{"type": "text", "text": msg[1]}]})
|
34 |
+
|
35 |
+
if len(message["files"]) == 1:
|
36 |
+
if isinstance(message["files"][0], str):
|
37 |
+
image = Image.open(message["files"][0]).convert("RGB")
|
38 |
+
else:
|
39 |
+
image = Image.open(message["files"][0]["path"]).convert("RGB")
|
40 |
+
images.append(image)
|
41 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}]})
|
42 |
+
else:
|
43 |
+
messages.append({"role": "user", "content": [{"type": "text", "text": txt}]})
|
44 |
+
|
45 |
+
texts = processor.apply_chat_template(messages, add_generation_prompt=True)
|
46 |
+
|
47 |
+
if images == []:
|
48 |
+
inputs = processor(text=texts, return_tensors="pt") # No .to("cuda"), stays on CPU
|
49 |
+
else:
|
50 |
+
inputs = processor(text=texts, images=images, return_tensors="pt") # No .to("cuda"), stays on CPU
|
51 |
+
|
52 |
+
streamer = TextIteratorStreamer(processor, skip_special_tokens=True, skip_prompt=True)
|
53 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
|
54 |
+
generated_text = ""
|
55 |
+
|
56 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
57 |
+
thread.start()
|
58 |
+
buffer = ""
|
59 |
+
|
60 |
+
for new_text in streamer:
|
61 |
+
buffer += new_text
|
62 |
+
generated_text_without_prompt = buffer
|
63 |
+
time.sleep(0.01)
|
64 |
+
yield buffer
|
65 |
+
|
66 |
+
demo = gr.ChatInterface(
|
67 |
+
fn=bot_streaming,
|
68 |
+
title="Multimodal Llama",
|
69 |
+
examples=[], # No examples provided
|
70 |
+
textbox=gr.MultimodalTextbox(),
|
71 |
+
additional_inputs=[gr.Slider(
|
72 |
+
minimum=10,
|
73 |
+
maximum=500,
|
74 |
+
value=250,
|
75 |
+
step=10,
|
76 |
+
label="Maximum number of new tokens to generate",
|
77 |
+
)],
|
78 |
+
cache_examples=False,
|
79 |
+
description="Try Multimodal Llama by Meta with transformers in this demo. Upload an image, and start chatting about it. To learn more about Llama Vision, visit [our blog post](https://huggingface.co/blog/llama32).",
|
80 |
+
stop_btn="Stop Generation",
|
81 |
+
fill_height=True,
|
82 |
+
multimodal=True
|
83 |
+
)
|
84 |
+
|
85 |
+
demo.launch(debug=True)
|