|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
import google.generativeai as genai |
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
image, |
|
): |
|
|
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
print (message,image) |
|
|
|
if isinstance(image, np.ndarray): |
|
img = PIL.Image.fromarray(image) |
|
else: |
|
try: |
|
img = PIL.Image.open(image) |
|
except (AttributeError, IOError) as e: |
|
return f"Invalid image provided. Please provide a valid image file. Error: {e}" |
|
|
|
|
|
model = genai.GenerativeModel("gemini-pro-vision") |
|
|
|
response = model.generate_content([messages, img]) |
|
print (response) |
|
return response |
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Image(show_label=False) |
|
], |
|
additional_inputs_accordion=gr.Accordion(open=True), |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |