Harumiiii's picture
Update app.py
ebb1079 verified
raw
history blame
4.29 kB
import gradio as gr
import numpy as np
import random
from diffusers import DiffusionPipeline
import torch
# Set the device based on availability
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use the ByteDance/AnimateDiff-Lightning model
model_repo_id = "ByteDance/AnimateDiff-Lightning"
# Set the torch dtype based on available hardware
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
# Load the pipeline from the pretrained model repository
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
pipe = pipe.to(device)
# Maximum values for seed and image size
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# Define the inference function
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
# Randomize seed if the checkbox is selected
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
# Generate the animation using the pipeline
animation = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator
).images[0] # Assuming the model generates images in the `.images` property
return animation, seed
# Sample prompts for the UI
examples = [
"A cat playing with a ball in a garden",
"A dancing astronaut in space",
"A flying dragon in the sky at sunset",
]
# Define CSS for styling
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
# Build the Gradio UI
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""
# AnimateDiff Lightning Model Text-to-Animation
""")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Generated Animation", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
visible=True,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=7.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
# Example prompts for user selection
gr.Examples(
examples=examples,
inputs=[prompt]
)
# Create an API endpoint for the model
demo.api(fn=infer, inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs=[result, seed])
demo.launch()