import torch from diffusers import AnimateDiffPipeline, MotionAdapter, EulerDiscreteScheduler from diffusers.utils import export_to_gif from huggingface_hub import hf_hub_download from safetensors.torch import load_file import gradio as gr device = "cuda" if torch.cuda.is_available() else "cpu" dtype = torch.float16 if torch.cuda.is_available() else torch.float32 step = 4 # Options: [1,2,4,8] repo = "ByteDance/AnimateDiff-Lightning" ckpt = f"animatediff_lightning_{step}step_diffusers.safetensors" base = "emilianJR/epiCRealism" adapter = MotionAdapter().to(device, dtype) adapter.load_state_dict(load_file(hf_hub_download(repo, ckpt), device=device)) pipe = AnimateDiffPipeline.from_pretrained(base, motion_adapter=adapter, torch_dtype=dtype).to(device) pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", beta_schedule="linear") def animate_image(prompt, guidance_scale, num_inference_steps): output = pipe(prompt=prompt, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps) gif_path = "animation.gif" export_to_gif(output.frames[0], gif_path) return gif_path # Define the Gradio Interface with gr.Blocks() as demo: gr.Markdown("# AnimateDiff API") with gr.Row(): prompt = gr.Textbox(label="Prompt", placeholder="A girl smiling", value="A girl smiling") guidance_scale = gr.Slider(label="Guidance Scale", minimum=0.0, maximum=10.0, value=1.0, step=0.1) num_inference_steps = gr.Slider(label="Steps", minimum=1, maximum=8, value=step, step=1) gif_output = gr.Image(label="Generated Animation") # Button to run the pipeline run_button = gr.Button("Generate Animation") run_button.click(animate_image, inputs=[prompt, guidance_scale, num_inference_steps], outputs=[gif_output]) # Launch the interface demo.launch()