harveen
Add Odia
f80229d
raw
history blame
9.17 kB
import copy
import math
import numpy as np
import scipy
import torch
from torch import nn
from torch.nn import functional as F
import commons
class LayerNorm(nn.Module):
def __init__(self, channels, eps=1e-4):
super().__init__()
self.channels = channels
self.eps = eps
self.gamma = nn.Parameter(torch.ones(channels))
self.beta = nn.Parameter(torch.zeros(channels))
def forward(self, x):
n_dims = len(x.shape)
mean = torch.mean(x, 1, keepdim=True)
variance = torch.mean((x - mean) ** 2, 1, keepdim=True)
x = (x - mean) * torch.rsqrt(variance + self.eps)
shape = [1, -1] + [1] * (n_dims - 2)
x = x * self.gamma.view(*shape) + self.beta.view(*shape)
return x
class ConvReluNorm(nn.Module):
def __init__(
self,
in_channels,
hidden_channels,
out_channels,
kernel_size,
n_layers,
p_dropout,
):
super().__init__()
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.n_layers = n_layers
self.p_dropout = p_dropout
assert n_layers > 1, "Number of layers should be larger than 0."
self.conv_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.conv_layers.append(
nn.Conv1d(
in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
)
)
self.norm_layers.append(LayerNorm(hidden_channels))
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
for _ in range(n_layers - 1):
self.conv_layers.append(
nn.Conv1d(
hidden_channels,
hidden_channels,
kernel_size,
padding=kernel_size // 2,
)
)
self.norm_layers.append(LayerNorm(hidden_channels))
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, x, x_mask):
x_org = x
for i in range(self.n_layers):
x = self.conv_layers[i](x * x_mask)
x = self.norm_layers[i](x)
x = self.relu_drop(x)
x = x_org + self.proj(x)
return x * x_mask
class WN(torch.nn.Module):
def __init__(
self,
in_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
gin_channels=0,
p_dropout=0,
):
super(WN, self).__init__()
assert kernel_size % 2 == 1
assert hidden_channels % 2 == 0
self.in_channels = in_channels
self.hidden_channels = hidden_channels
self.kernel_size = (kernel_size,)
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.gin_channels = gin_channels
self.p_dropout = p_dropout
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
self.drop = nn.Dropout(p_dropout)
if gin_channels != 0:
cond_layer = torch.nn.Conv1d(
gin_channels, 2 * hidden_channels * n_layers, 1
)
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
for i in range(n_layers):
dilation = dilation_rate ** i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = torch.nn.Conv1d(
hidden_channels,
2 * hidden_channels,
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
self.in_layers.append(in_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * hidden_channels
else:
res_skip_channels = hidden_channels
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
self.res_skip_layers.append(res_skip_layer)
def forward(self, x, x_mask=None, g=None, **kwargs):
output = torch.zeros_like(x)
n_channels_tensor = torch.IntTensor([self.hidden_channels])
if g is not None:
g = self.cond_layer(g)
for i in range(self.n_layers):
x_in = self.in_layers[i](x)
x_in = self.drop(x_in)
if g is not None:
cond_offset = i * 2 * self.hidden_channels
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
else:
g_l = torch.zeros_like(x_in)
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
x = (x + res_skip_acts[:, : self.hidden_channels, :]) * x_mask
output = output + res_skip_acts[:, self.hidden_channels :, :]
else:
output = output + res_skip_acts
return output * x_mask
def remove_weight_norm(self):
if self.gin_channels != 0:
torch.nn.utils.remove_weight_norm(self.cond_layer)
for l in self.in_layers:
torch.nn.utils.remove_weight_norm(l)
for l in self.res_skip_layers:
torch.nn.utils.remove_weight_norm(l)
class ActNorm(nn.Module):
def __init__(self, channels, ddi=False, **kwargs):
super().__init__()
self.channels = channels
self.initialized = not ddi
self.logs = nn.Parameter(torch.zeros(1, channels, 1))
self.bias = nn.Parameter(torch.zeros(1, channels, 1))
def forward(self, x, x_mask=None, reverse=False, **kwargs):
if x_mask is None:
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(
device=x.device, dtype=x.dtype
)
x_len = torch.sum(x_mask, [1, 2])
if not self.initialized:
self.initialize(x, x_mask)
self.initialized = True
if reverse:
z = (x - self.bias) * torch.exp(-self.logs) * x_mask
logdet = None
else:
z = (self.bias + torch.exp(self.logs) * x) * x_mask
logdet = torch.sum(self.logs) * x_len # [b]
return z, logdet
def store_inverse(self):
pass
def set_ddi(self, ddi):
self.initialized = not ddi
def initialize(self, x, x_mask):
with torch.no_grad():
denom = torch.sum(x_mask, [0, 2])
m = torch.sum(x * x_mask, [0, 2]) / denom
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
v = m_sq - (m ** 2)
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
bias_init = (
(-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype)
)
logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype)
self.bias.data.copy_(bias_init)
self.logs.data.copy_(logs_init)
class InvConvNear(nn.Module):
def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs):
super().__init__()
assert n_split % 2 == 0
self.channels = channels
self.n_split = n_split
self.no_jacobian = no_jacobian
w_init = torch.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0]
if torch.det(w_init) < 0:
w_init[:, 0] = -1 * w_init[:, 0]
self.weight = nn.Parameter(w_init)
def forward(self, x, x_mask=None, reverse=False, **kwargs):
b, c, t = x.size()
assert c % self.n_split == 0
if x_mask is None:
x_mask = 1
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
else:
x_len = torch.sum(x_mask, [1, 2])
x = x.view(b, 2, c // self.n_split, self.n_split // 2, t)
x = (
x.permute(0, 1, 3, 2, 4)
.contiguous()
.view(b, self.n_split, c // self.n_split, t)
)
if reverse:
if hasattr(self, "weight_inv"):
weight = self.weight_inv
else:
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
logdet = None
else:
weight = self.weight
if self.no_jacobian:
logdet = 0
else:
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b]
weight = weight.view(self.n_split, self.n_split, 1, 1)
z = F.conv2d(x, weight)
z = z.view(b, 2, self.n_split // 2, c // self.n_split, t)
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
return z, logdet
def store_inverse(self):
self.weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)