Spaces:
Runtime error
Runtime error
import os | |
import json | |
import argparse | |
import math | |
import torch | |
from torch import nn, optim | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
from torch.utils.tensorboard import SummaryWriter | |
import torch.multiprocessing as mp | |
import torch.distributed as dist | |
from apex.parallel import DistributedDataParallel as DDP | |
from apex import amp | |
from data_utils import TextMelLoader, TextMelCollate | |
import models | |
import commons | |
import utils | |
global_step = 0 | |
def main(): | |
"""Assume Single Node Multi GPUs Training Only""" | |
assert torch.cuda.is_available(), "CPU training is not allowed." | |
n_gpus = torch.cuda.device_count() | |
os.environ["MASTER_ADDR"] = "localhost" | |
os.environ["MASTER_PORT"] = "80000" | |
hps = utils.get_hparams() | |
mp.spawn( | |
train_and_eval, | |
nprocs=n_gpus, | |
args=( | |
n_gpus, | |
hps, | |
), | |
) | |
def train_and_eval(rank, n_gpus, hps): | |
global global_step | |
if rank == 0: | |
logger = utils.get_logger(hps.log_dir) | |
logger.info(hps) | |
utils.check_git_hash(hps.log_dir) | |
writer = SummaryWriter(log_dir=hps.log_dir) | |
writer_eval = SummaryWriter(log_dir=os.path.join(hps.log_dir, "eval")) | |
dist.init_process_group( | |
backend="nccl", init_method="env://", world_size=n_gpus, rank=rank | |
) | |
torch.manual_seed(hps.train.seed) | |
torch.cuda.set_device(rank) | |
train_dataset = TextMelLoader(hps.data.training_files, hps.data) | |
train_sampler = torch.utils.data.distributed.DistributedSampler( | |
train_dataset, num_replicas=n_gpus, rank=rank, shuffle=True | |
) | |
collate_fn = TextMelCollate(1) | |
train_loader = DataLoader( | |
train_dataset, | |
num_workers=8, | |
shuffle=False, | |
batch_size=hps.train.batch_size, | |
pin_memory=True, | |
drop_last=True, | |
collate_fn=collate_fn, | |
sampler=train_sampler, | |
) | |
if rank == 0: | |
val_dataset = TextMelLoader(hps.data.validation_files, hps.data) | |
val_loader = DataLoader( | |
val_dataset, | |
num_workers=8, | |
shuffle=False, | |
batch_size=hps.train.batch_size, | |
pin_memory=True, | |
drop_last=True, | |
collate_fn=collate_fn, | |
) | |
symbols = hps.data.punc + hps.data.chars | |
generator = models.FlowGenerator( | |
n_vocab=len(symbols) + getattr(hps.data, "add_blank", False), | |
out_channels=hps.data.n_mel_channels, | |
**hps.model | |
).cuda(rank) | |
optimizer_g = commons.Adam( | |
generator.parameters(), | |
scheduler=hps.train.scheduler, | |
dim_model=hps.model.hidden_channels, | |
warmup_steps=hps.train.warmup_steps, | |
lr=hps.train.learning_rate, | |
betas=hps.train.betas, | |
eps=hps.train.eps, | |
) | |
if hps.train.fp16_run: | |
generator, optimizer_g._optim = amp.initialize( | |
generator, optimizer_g._optim, opt_level="O1" | |
) | |
generator = DDP(generator) | |
epoch_str = 1 | |
global_step = 0 | |
try: | |
_, _, _, epoch_str = utils.load_checkpoint( | |
utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), | |
generator, | |
optimizer_g, | |
) | |
epoch_str += 1 | |
optimizer_g.step_num = (epoch_str - 1) * len(train_loader) | |
optimizer_g._update_learning_rate() | |
global_step = (epoch_str - 1) * len(train_loader) | |
except: | |
if hps.train.ddi and os.path.isfile(os.path.join(hps.model_dir, "ddi_G.pth")): | |
_ = utils.load_checkpoint( | |
os.path.join(hps.model_dir, "ddi_G.pth"), generator, optimizer_g | |
) | |
for epoch in range(epoch_str, hps.train.epochs + 1): | |
if rank == 0: | |
train( | |
rank, epoch, hps, generator, optimizer_g, train_loader, logger, writer | |
) | |
evaluate( | |
rank, | |
epoch, | |
hps, | |
generator, | |
optimizer_g, | |
val_loader, | |
logger, | |
writer_eval, | |
) | |
if epoch % hps.train.save_epoch == 0: | |
utils.save_checkpoint( | |
generator, | |
optimizer_g, | |
hps.train.learning_rate, | |
epoch, | |
os.path.join(hps.model_dir, "G_{}.pth".format(epoch)), | |
) | |
else: | |
train(rank, epoch, hps, generator, optimizer_g, train_loader, None, None) | |
def train(rank, epoch, hps, generator, optimizer_g, train_loader, logger, writer): | |
train_loader.sampler.set_epoch(epoch) | |
global global_step | |
generator.train() | |
for batch_idx, (x, x_lengths, y, y_lengths) in enumerate(train_loader): | |
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda( | |
rank, non_blocking=True | |
) | |
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda( | |
rank, non_blocking=True | |
) | |
# Train Generator | |
optimizer_g.zero_grad() | |
( | |
(z, z_m, z_logs, logdet, z_mask), | |
(x_m, x_logs, x_mask), | |
(attn, logw, logw_), | |
) = generator(x, x_lengths, y, y_lengths, gen=False) | |
l_mle = commons.mle_loss(z, z_m, z_logs, logdet, z_mask) | |
l_length = commons.duration_loss(logw, logw_, x_lengths) | |
loss_gs = [l_mle, l_length] | |
loss_g = sum(loss_gs) | |
if hps.train.fp16_run: | |
with amp.scale_loss(loss_g, optimizer_g._optim) as scaled_loss: | |
scaled_loss.backward() | |
grad_norm = commons.clip_grad_value_( | |
amp.master_params(optimizer_g._optim), 5 | |
) | |
else: | |
loss_g.backward() | |
grad_norm = commons.clip_grad_value_(generator.parameters(), 5) | |
optimizer_g.step() | |
if rank == 0: | |
if batch_idx % hps.train.log_interval == 0: | |
(y_gen, *_), *_ = generator.module(x[:1], x_lengths[:1], gen=True) | |
logger.info( | |
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( | |
epoch, | |
batch_idx * len(x), | |
len(train_loader.dataset), | |
100.0 * batch_idx / len(train_loader), | |
loss_g.item(), | |
) | |
) | |
logger.info( | |
[x.item() for x in loss_gs] + [global_step, optimizer_g.get_lr()] | |
) | |
scalar_dict = { | |
"loss/g/total": loss_g, | |
"learning_rate": optimizer_g.get_lr(), | |
"grad_norm": grad_norm, | |
} | |
scalar_dict.update( | |
{"loss/g/{}".format(i): v for i, v in enumerate(loss_gs)} | |
) | |
utils.summarize( | |
writer=writer, | |
global_step=global_step, | |
images={ | |
"y_org": utils.plot_spectrogram_to_numpy( | |
y[0].data.cpu().numpy() | |
), | |
"y_gen": utils.plot_spectrogram_to_numpy( | |
y_gen[0].data.cpu().numpy() | |
), | |
"attn": utils.plot_alignment_to_numpy( | |
attn[0, 0].data.cpu().numpy() | |
), | |
}, | |
scalars=scalar_dict, | |
) | |
global_step += 1 | |
if rank == 0: | |
logger.info("====> Epoch: {}".format(epoch)) | |
def evaluate(rank, epoch, hps, generator, optimizer_g, val_loader, logger, writer_eval): | |
if rank == 0: | |
global global_step | |
generator.eval() | |
losses_tot = [] | |
with torch.no_grad(): | |
for batch_idx, (x, x_lengths, y, y_lengths) in enumerate(val_loader): | |
x, x_lengths = x.cuda(rank, non_blocking=True), x_lengths.cuda( | |
rank, non_blocking=True | |
) | |
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda( | |
rank, non_blocking=True | |
) | |
( | |
(z, z_m, z_logs, logdet, z_mask), | |
(x_m, x_logs, x_mask), | |
(attn, logw, logw_), | |
) = generator(x, x_lengths, y, y_lengths, gen=False) | |
l_mle = commons.mle_loss(z, z_m, z_logs, logdet, z_mask) | |
l_length = commons.duration_loss(logw, logw_, x_lengths) | |
loss_gs = [l_mle, l_length] | |
loss_g = sum(loss_gs) | |
if batch_idx == 0: | |
losses_tot = loss_gs | |
else: | |
losses_tot = [x + y for (x, y) in zip(losses_tot, loss_gs)] | |
if batch_idx % hps.train.log_interval == 0: | |
logger.info( | |
"Eval Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format( | |
epoch, | |
batch_idx * len(x), | |
len(val_loader.dataset), | |
100.0 * batch_idx / len(val_loader), | |
loss_g.item(), | |
) | |
) | |
logger.info([x.item() for x in loss_gs]) | |
losses_tot = [x / len(val_loader) for x in losses_tot] | |
loss_tot = sum(losses_tot) | |
scalar_dict = {"loss/g/total": loss_tot} | |
scalar_dict.update({"loss/g/{}".format(i): v for i, v in enumerate(losses_tot)}) | |
utils.summarize( | |
writer=writer_eval, global_step=global_step, scalars=scalar_dict | |
) | |
logger.info("====> Epoch: {}".format(epoch)) | |
if __name__ == "__main__": | |
main() | |