Spaces:
Runtime error
Runtime error
import warnings | |
warnings.simplefilter(action="ignore", category=FutureWarning) | |
import itertools | |
import os | |
import time | |
import argparse | |
import json | |
import torch | |
import torch.nn.functional as F | |
from torch.utils.tensorboard import SummaryWriter | |
from torch.utils.data import DistributedSampler, DataLoader | |
import torch.multiprocessing as mp | |
from torch.distributed import init_process_group | |
from torch.nn.parallel import DistributedDataParallel | |
from env import AttrDict, build_env | |
from meldataset import MelDataset, mel_spectrogram, get_dataset_filelist | |
from models import ( | |
Generator, | |
MultiPeriodDiscriminator, | |
MultiScaleDiscriminator, | |
feature_loss, | |
generator_loss, | |
discriminator_loss, | |
) | |
from utils import plot_spectrogram, scan_checkpoint, load_checkpoint, save_checkpoint | |
torch.backends.cudnn.benchmark = True | |
def train(rank, a, h): | |
if h.num_gpus > 1: | |
init_process_group( | |
backend=h.dist_config["dist_backend"], | |
init_method=h.dist_config["dist_url"], | |
world_size=h.dist_config["world_size"] * h.num_gpus, | |
rank=rank, | |
) | |
torch.cuda.manual_seed(h.seed) | |
device = torch.device("cuda:{:d}".format(rank)) | |
generator = Generator(h).to(device) | |
mpd = MultiPeriodDiscriminator().to(device) | |
msd = MultiScaleDiscriminator().to(device) | |
if rank == 0: | |
print(generator) | |
os.makedirs(a.checkpoint_path, exist_ok=True) | |
print("checkpoints directory : ", a.checkpoint_path) | |
if os.path.isdir(a.checkpoint_path): | |
cp_g = scan_checkpoint(a.checkpoint_path, "g_") | |
cp_do = scan_checkpoint(a.checkpoint_path, "do_") | |
steps = 0 | |
if cp_g is None or cp_do is None: | |
state_dict_do = None | |
last_epoch = -1 | |
else: | |
state_dict_g = load_checkpoint(cp_g, device) | |
state_dict_do = load_checkpoint(cp_do, device) | |
generator.load_state_dict(state_dict_g["generator"]) | |
mpd.load_state_dict(state_dict_do["mpd"]) | |
msd.load_state_dict(state_dict_do["msd"]) | |
steps = state_dict_do["steps"] + 1 | |
last_epoch = state_dict_do["epoch"] | |
if h.num_gpus > 1: | |
generator = DistributedDataParallel(generator, device_ids=[rank]).to(device) | |
mpd = DistributedDataParallel(mpd, device_ids=[rank]).to(device) | |
msd = DistributedDataParallel(msd, device_ids=[rank]).to(device) | |
optim_g = torch.optim.AdamW( | |
generator.parameters(), h.learning_rate, betas=[h.adam_b1, h.adam_b2] | |
) | |
optim_d = torch.optim.AdamW( | |
itertools.chain(msd.parameters(), mpd.parameters()), | |
h.learning_rate, | |
betas=[h.adam_b1, h.adam_b2], | |
) | |
if state_dict_do is not None: | |
optim_g.load_state_dict(state_dict_do["optim_g"]) | |
optim_d.load_state_dict(state_dict_do["optim_d"]) | |
scheduler_g = torch.optim.lr_scheduler.ExponentialLR( | |
optim_g, gamma=h.lr_decay, last_epoch=last_epoch | |
) | |
scheduler_d = torch.optim.lr_scheduler.ExponentialLR( | |
optim_d, gamma=h.lr_decay, last_epoch=last_epoch | |
) | |
training_filelist, validation_filelist = get_dataset_filelist(a) | |
trainset = MelDataset( | |
training_filelist, | |
h.segment_size, | |
h.n_fft, | |
h.num_mels, | |
h.hop_size, | |
h.win_size, | |
h.sampling_rate, | |
h.fmin, | |
h.fmax, | |
n_cache_reuse=0, | |
shuffle=False if h.num_gpus > 1 else True, | |
fmax_loss=h.fmax_for_loss, | |
device=device, | |
fine_tuning=a.fine_tuning, | |
base_mels_path=a.input_mels_dir, | |
) | |
train_sampler = DistributedSampler(trainset) if h.num_gpus > 1 else None | |
train_loader = DataLoader( | |
trainset, | |
num_workers=h.num_workers, | |
shuffle=False, | |
sampler=train_sampler, | |
batch_size=h.batch_size, | |
pin_memory=True, | |
drop_last=True, | |
) | |
if rank == 0: | |
validset = MelDataset( | |
validation_filelist, | |
h.segment_size, | |
h.n_fft, | |
h.num_mels, | |
h.hop_size, | |
h.win_size, | |
h.sampling_rate, | |
h.fmin, | |
h.fmax, | |
False, | |
False, | |
n_cache_reuse=0, | |
fmax_loss=h.fmax_for_loss, | |
device=device, | |
fine_tuning=a.fine_tuning, | |
base_mels_path=a.input_mels_dir, | |
) | |
validation_loader = DataLoader( | |
validset, | |
num_workers=1, | |
shuffle=False, | |
sampler=None, | |
batch_size=1, | |
pin_memory=True, | |
drop_last=True, | |
) | |
sw = SummaryWriter(os.path.join(a.logs_path)) | |
generator.train() | |
mpd.train() | |
msd.train() | |
for epoch in range(max(0, last_epoch), a.training_epochs): | |
if rank == 0: | |
start = time.time() | |
print("Epoch: {}".format(epoch + 1)) | |
if h.num_gpus > 1: | |
train_sampler.set_epoch(epoch) | |
for i, batch in enumerate(train_loader): | |
if rank == 0: | |
start_b = time.time() | |
x, y, _, y_mel = batch | |
x = torch.autograd.Variable(x.to(device, non_blocking=True)) | |
y = torch.autograd.Variable(y.to(device, non_blocking=True)) | |
y_mel = torch.autograd.Variable(y_mel.to(device, non_blocking=True)) | |
y = y.unsqueeze(1) | |
y_g_hat = generator(x) | |
y_g_hat_mel = mel_spectrogram( | |
y_g_hat.squeeze(1), | |
h.n_fft, | |
h.num_mels, | |
h.sampling_rate, | |
h.hop_size, | |
h.win_size, | |
h.fmin, | |
h.fmax_for_loss, | |
) | |
optim_d.zero_grad() | |
# MPD | |
y_df_hat_r, y_df_hat_g, _, _ = mpd(y, y_g_hat.detach()) | |
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss( | |
y_df_hat_r, y_df_hat_g | |
) | |
# MSD | |
y_ds_hat_r, y_ds_hat_g, _, _ = msd(y, y_g_hat.detach()) | |
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss( | |
y_ds_hat_r, y_ds_hat_g | |
) | |
loss_disc_all = loss_disc_s + loss_disc_f | |
loss_disc_all.backward() | |
optim_d.step() | |
# Generator | |
optim_g.zero_grad() | |
# L1 Mel-Spectrogram Loss | |
loss_mel = F.l1_loss(y_mel, y_g_hat_mel) * 45 | |
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = mpd(y, y_g_hat) | |
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = msd(y, y_g_hat) | |
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g) | |
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g) | |
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g) | |
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g) | |
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_mel | |
loss_gen_all.backward() | |
optim_g.step() | |
if rank == 0: | |
# STDOUT logging | |
if steps % a.stdout_interval == 0: | |
with torch.no_grad(): | |
mel_error = F.l1_loss(y_mel, y_g_hat_mel).item() | |
print( | |
"Steps : {:d}, Gen Loss Total : {:4.3f}, Mel-Spec. Error : {:4.3f}, s/b : {:4.3f}".format( | |
steps, loss_gen_all, mel_error, time.time() - start_b | |
) | |
) | |
# checkpointing | |
if steps % a.checkpoint_interval == 0 and steps != 0: | |
checkpoint_path = "{}/g_{:08d}".format(a.checkpoint_path, steps) | |
save_checkpoint( | |
checkpoint_path, | |
{ | |
"generator": ( | |
generator.module if h.num_gpus > 1 else generator | |
).state_dict() | |
}, | |
) | |
checkpoint_path = "{}/do_{:08d}".format(a.checkpoint_path, steps) | |
save_checkpoint( | |
checkpoint_path, | |
{ | |
"mpd": (mpd.module if h.num_gpus > 1 else mpd).state_dict(), | |
"msd": (msd.module if h.num_gpus > 1 else msd).state_dict(), | |
"optim_g": optim_g.state_dict(), | |
"optim_d": optim_d.state_dict(), | |
"steps": steps, | |
"epoch": epoch, | |
}, | |
) | |
# Tensorboard summary logging | |
if steps % a.summary_interval == 0: | |
sw.add_scalar("training/gen_loss_total", loss_gen_all, steps) | |
sw.add_scalar("training/mel_spec_error", mel_error, steps) | |
# Validation | |
if steps % a.validation_interval == 0: # and steps != 0: | |
generator.eval() | |
torch.cuda.empty_cache() | |
val_err_tot = 0 | |
with torch.no_grad(): | |
for j, batch in enumerate(validation_loader): | |
x, y, _, y_mel = batch | |
y_g_hat = generator(x.to(device)) | |
y_mel = torch.autograd.Variable( | |
y_mel.to(device, non_blocking=True) | |
) | |
y_g_hat_mel = mel_spectrogram( | |
y_g_hat.squeeze(1), | |
h.n_fft, | |
h.num_mels, | |
h.sampling_rate, | |
h.hop_size, | |
h.win_size, | |
h.fmin, | |
h.fmax_for_loss, | |
) | |
val_err_tot += F.l1_loss(y_mel, y_g_hat_mel).item() | |
if j <= 4: | |
if steps == 0: | |
sw.add_audio( | |
"gt/y_{}".format(j), | |
y[0], | |
steps, | |
h.sampling_rate, | |
) | |
sw.add_figure( | |
"gt/y_spec_{}".format(j), | |
plot_spectrogram(x[0]), | |
steps, | |
) | |
sw.add_audio( | |
"generated/y_hat_{}".format(j), | |
y_g_hat[0], | |
steps, | |
h.sampling_rate, | |
) | |
y_hat_spec = mel_spectrogram( | |
y_g_hat.squeeze(1), | |
h.n_fft, | |
h.num_mels, | |
h.sampling_rate, | |
h.hop_size, | |
h.win_size, | |
h.fmin, | |
h.fmax, | |
) | |
sw.add_figure( | |
"generated/y_hat_spec_{}".format(j), | |
plot_spectrogram( | |
y_hat_spec.squeeze(0).cpu().numpy() | |
), | |
steps, | |
) | |
val_err = val_err_tot / (j + 1) | |
sw.add_scalar("validation/mel_spec_error", val_err, steps) | |
generator.train() | |
steps += 1 | |
scheduler_g.step() | |
scheduler_d.step() | |
if rank == 0: | |
print( | |
"Time taken for epoch {} is {} sec\n".format( | |
epoch + 1, int(time.time() - start) | |
) | |
) | |
def main(): | |
print("Initializing Training Process..") | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--group_name", default=None) | |
parser.add_argument("--input_wavs_dir", default="LJSpeech-1.1/wavs") | |
parser.add_argument("--input_mels_dir", default="ft_dataset") | |
parser.add_argument("--input_training_file", default="LJSpeech-1.1/training.txt") | |
parser.add_argument( | |
"--input_validation_file", default="LJSpeech-1.1/validation.txt" | |
) | |
parser.add_argument("--checkpoint_path", default="cp_hifigan") | |
parser.add_argument("--logs_path", default="") | |
parser.add_argument("--config", default="") | |
parser.add_argument("--training_epochs", default=3100, type=int) | |
parser.add_argument("--stdout_interval", default=5, type=int) | |
parser.add_argument("--checkpoint_interval", default=5000, type=int) | |
parser.add_argument("--summary_interval", default=100, type=int) | |
parser.add_argument("--validation_interval", default=1000, type=int) | |
parser.add_argument("--fine_tuning", default=False, type=bool) | |
a = parser.parse_args() | |
with open(a.config) as f: | |
data = f.read() | |
json_config = json.loads(data) | |
h = AttrDict(json_config) | |
build_env(a.config, "config.json", a.checkpoint_path) | |
torch.manual_seed(h.seed) | |
if torch.cuda.is_available(): | |
torch.cuda.manual_seed(h.seed) | |
h.num_gpus = torch.cuda.device_count() | |
h.batch_size = int(h.batch_size / h.num_gpus) | |
print("Batch size per GPU :", h.batch_size) | |
else: | |
pass | |
if h.num_gpus > 1: | |
mp.spawn( | |
train, | |
nprocs=h.num_gpus, | |
args=( | |
a, | |
h, | |
), | |
) | |
else: | |
train(0, a, h) | |
if __name__ == "__main__": | |
main() | |