import random import numpy as np import torch import torch.utils.data import commons from utils import load_wav_to_torch, load_filepaths_and_text from text import text_to_sequence class TextMelLoader(torch.utils.data.Dataset): """ 1) loads audio,text pairs 2) normalizes text and converts them to sequences of one-hot vectors 3) computes mel-spectrograms from audio files. """ def __init__(self, audiopaths_and_text, hparams): self.audiopaths_and_text = load_filepaths_and_text(audiopaths_and_text) self.text_cleaners = hparams.text_cleaners self.max_wav_value = hparams.max_wav_value self.sampling_rate = hparams.sampling_rate self.load_mel_from_disk = hparams.load_mel_from_disk self.add_noise = hparams.add_noise self.symbols = hparams.punc + hparams.chars self.add_blank = getattr(hparams, "add_blank", False) # improved version self.stft = commons.TacotronSTFT( hparams.filter_length, hparams.hop_length, hparams.win_length, hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin, hparams.mel_fmax, ) random.seed(1234) random.shuffle(self.audiopaths_and_text) def get_mel_text_pair(self, audiopath_and_text): # separate filename and text audiopath, text = audiopath_and_text[0], audiopath_and_text[1] text = self.get_text(text) mel = self.get_mel(audiopath) return (text, mel) def get_mel(self, filename): if not self.load_mel_from_disk: audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.stft.sampling_rate: raise ValueError( "{} {} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate ) ) if self.add_noise: audio = audio + torch.rand_like(audio) audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) melspec = self.stft.mel_spectrogram(audio_norm) melspec = torch.squeeze(melspec, 0) else: melspec = torch.from_numpy(np.load(filename)) assert ( melspec.size(0) == self.stft.n_mel_channels ), "Mel dimension mismatch: given {}, expected {}".format( melspec.size(0), self.stft.n_mel_channels ) return melspec def get_text(self, text): text_norm = text_to_sequence(text, self.symbols, self.text_cleaners) if self.add_blank: text_norm = commons.intersperse( text_norm, len(self.symbols) ) # add a blank token, whose id number is len(symbols) text_norm = torch.IntTensor(text_norm) return text_norm def __getitem__(self, index): return self.get_mel_text_pair(self.audiopaths_and_text[index]) def __len__(self): return len(self.audiopaths_and_text) class TextMelCollate: """Zero-pads model inputs and targets based on number of frames per step""" def __init__(self, n_frames_per_step=1): self.n_frames_per_step = n_frames_per_step def __call__(self, batch): """Collate's training batch from normalized text and mel-spectrogram PARAMS ------ batch: [text_normalized, mel_normalized] """ # Right zero-pad all one-hot text sequences to max input length input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([len(x[0]) for x in batch]), dim=0, descending=True ) max_input_len = input_lengths[0] text_padded = torch.LongTensor(len(batch), max_input_len) text_padded.zero_() for i in range(len(ids_sorted_decreasing)): text = batch[ids_sorted_decreasing[i]][0] text_padded[i, : text.size(0)] = text # Right zero-pad mel-spec num_mels = batch[0][1].size(0) max_target_len = max([x[1].size(1) for x in batch]) if max_target_len % self.n_frames_per_step != 0: max_target_len += ( self.n_frames_per_step - max_target_len % self.n_frames_per_step ) assert max_target_len % self.n_frames_per_step == 0 # include mel padded mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len) mel_padded.zero_() output_lengths = torch.LongTensor(len(batch)) for i in range(len(ids_sorted_decreasing)): mel = batch[ids_sorted_decreasing[i]][1] mel_padded[i, :, : mel.size(1)] = mel output_lengths[i] = mel.size(1) return text_padded, input_lengths, mel_padded, output_lengths """Multi speaker version""" class TextMelSpeakerLoader(torch.utils.data.Dataset): """ 1) loads audio, speaker_id, text pairs 2) normalizes text and converts them to sequences of one-hot vectors 3) computes mel-spectrograms from audio files. """ def __init__(self, audiopaths_sid_text, hparams): self.audiopaths_sid_text = load_filepaths_and_text(audiopaths_sid_text) self.text_cleaners = hparams.text_cleaners self.max_wav_value = hparams.max_wav_value self.sampling_rate = hparams.sampling_rate self.load_mel_from_disk = hparams.load_mel_from_disk self.add_noise = hparams.add_noise self.symbols = hparams.punc + hparams.chars self.add_blank = getattr(hparams, "add_blank", False) # improved version self.min_text_len = getattr(hparams, "min_text_len", 1) self.max_text_len = getattr(hparams, "max_text_len", 190) self.stft = commons.TacotronSTFT( hparams.filter_length, hparams.hop_length, hparams.win_length, hparams.n_mel_channels, hparams.sampling_rate, hparams.mel_fmin, hparams.mel_fmax, ) self._filter_text_len() random.seed(1234) random.shuffle(self.audiopaths_sid_text) def _filter_text_len(self): audiopaths_sid_text_new = [] for audiopath, sid, text in self.audiopaths_sid_text: if self.min_text_len <= len(text) and len(text) <= self.max_text_len: audiopaths_sid_text_new.append([audiopath, sid, text]) self.audiopaths_sid_text = audiopaths_sid_text_new def get_mel_text_speaker_pair(self, audiopath_sid_text): # separate filename, speaker_id and text audiopath, sid, text = ( audiopath_sid_text[0], audiopath_sid_text[1], audiopath_sid_text[2], ) text = self.get_text(text) mel = self.get_mel(audiopath) sid = self.get_sid(sid) return (text, mel, sid) def get_mel(self, filename): if not self.load_mel_from_disk: audio, sampling_rate = load_wav_to_torch(filename) if sampling_rate != self.stft.sampling_rate: raise ValueError( "{} {} SR doesn't match target {} SR".format( sampling_rate, self.stft.sampling_rate ) ) if self.add_noise: audio = audio + torch.rand_like(audio) audio_norm = audio / self.max_wav_value audio_norm = audio_norm.unsqueeze(0) melspec = self.stft.mel_spectrogram(audio_norm) melspec = torch.squeeze(melspec, 0) else: melspec = torch.from_numpy(np.load(filename)) assert ( melspec.size(0) == self.stft.n_mel_channels ), "Mel dimension mismatch: given {}, expected {}".format( melspec.size(0), self.stft.n_mel_channels ) return melspec def get_text(self, text): text_norm = text_to_sequence(text, self.symbols, self.text_cleaners) if self.add_blank: text_norm = commons.intersperse( text_norm, len(self.symbols) ) # add a blank token, whose id number is len(symbols) text_norm = torch.IntTensor(text_norm) return text_norm def get_sid(self, sid): sid = torch.IntTensor([int(sid)]) return sid def __getitem__(self, index): return self.get_mel_text_speaker_pair(self.audiopaths_sid_text[index]) def __len__(self): return len(self.audiopaths_sid_text) class TextMelSpeakerCollate: """Zero-pads model inputs and targets based on number of frames per step""" def __init__(self, n_frames_per_step=1): self.n_frames_per_step = n_frames_per_step def __call__(self, batch): """Collate's training batch from normalized text and mel-spectrogram PARAMS ------ batch: [text_normalized, mel_normalized] """ # Right zero-pad all one-hot text sequences to max input length input_lengths, ids_sorted_decreasing = torch.sort( torch.LongTensor([len(x[0]) for x in batch]), dim=0, descending=True ) max_input_len = input_lengths[0] text_padded = torch.LongTensor(len(batch), max_input_len) text_padded.zero_() for i in range(len(ids_sorted_decreasing)): text = batch[ids_sorted_decreasing[i]][0] text_padded[i, : text.size(0)] = text # Right zero-pad mel-spec num_mels = batch[0][1].size(0) max_target_len = max([x[1].size(1) for x in batch]) if max_target_len % self.n_frames_per_step != 0: max_target_len += ( self.n_frames_per_step - max_target_len % self.n_frames_per_step ) assert max_target_len % self.n_frames_per_step == 0 # include mel padded & sid mel_padded = torch.FloatTensor(len(batch), num_mels, max_target_len) mel_padded.zero_() output_lengths = torch.LongTensor(len(batch)) sid = torch.LongTensor(len(batch)) for i in range(len(ids_sorted_decreasing)): mel = batch[ids_sorted_decreasing[i]][1] mel_padded[i, :, : mel.size(1)] = mel output_lengths[i] = mel.size(1) sid[i] = batch[ids_sorted_decreasing[i]][2] return text_padded, input_lengths, mel_padded, output_lengths, sid