File size: 1,070 Bytes
87dca7d
dabb276
c829c5b
4236010
c829c5b
4f8631f
e220ed1
ff4fabf
 
3814228
 
513f022
627d9cd
1842d01
87dca7d
5476941
 
 
 
 
87dca7d
86b5efd
 
 
 
5476941
 
d6d572c
0ee68a4
86b5efd
5476941
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import os
#import gradio as gr

os.system('wget -q https://storage.googleapis.com/vakyaansh-open-models/translation_models/en-indic.zip')
os.system('unzip /home/user/app/en-indic.zip')
os.system('pip uninstall -y numpy')
os.system('pip install numpy')
#os.system('pip uninstall -y numba')
#os.system('pip install numba==0.53')

from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils
import gradio as grd
from inference.engine import Model
indic2en_model = Model(expdir='en-indic')

INDIC = {"Assamese": "as", "Bengali": "bn", "Gujarati": "gu", "Hindi": "hi","Kannada": "kn","Malayalam": "ml", "Marathi": "mr", "Odia": "or","Punjabi": "pa","Tamil": "ta", "Telugu" : "te"}


def translate(text, lang):
  return indic2en_model.translate_paragraph(text, 'en', INDIC[lang])



languages = INDIC.keys()

#print(translate('helo how are you'))
ddwn = grd.inputs.Dropdown(languages, type="value", default="Hindi", label="Select Target Language")


iface = grd.Interface(fn=translate, inputs=["text",ddwn] , outputs="text")
iface.launch(enable_queue=True)