harveen
Adding code
9bbf386
import time
from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils
from inference.engine import Model
from flask import Flask, request
from flask import jsonify
from flask_cors import CORS, cross_origin
import webvtt
from io import StringIO
app = Flask(__name__)
cors = CORS(app)
app.config['CORS_HEADERS'] = 'Content-Type'
indic2en_model = Model(expdir='../models/v3/indic-en')
en2indic_model = Model(expdir='../models/v3/en-indic')
m2m_model = Model(expdir='../models/m2m')
language_dict = {
'Assamese': 'as',
'Hindi' : 'hi',
'Marathi' : 'mr',
'Tamil' : 'ta',
'Bengali' : 'bn',
'Kannada' : 'kn',
'Oriya' : 'or',
'Telugu' : 'te',
'Gujarati' : 'gu',
'Malayalam' : 'ml',
'Punjabi' : 'pa',
}
def get_inference_params():
model_type = request.form['model_type']
source_language = request.form['source_language']
target_language = request.form['target_language']
if model_type == 'indic-en':
model = indic2en_model
source_lang = language_dict[source_language]
assert target_language == 'English'
target_lang = 'en'
elif model_type == 'en-indic':
model = en2indic_model
assert source_language == 'English'
source_lang = 'en'
target_lang = language_dict[target_language]
elif model_type == 'm2m':
model = m2m_model
source_lang = language_dict[source_language]
target_lang = language_dict[target_language]
return model, source_lang, target_lang
@app.route('/', methods=['GET'])
def main():
return "IndicTrans API"
@app.route("/translate", methods=['POST'])
@cross_origin()
def infer_indic_en():
model, source_lang, target_lang = get_inference_params()
source_text = request.form['text']
start_time = time.time()
target_text = model.translate_paragraph(source_text, source_lang, target_lang)
end_time = time.time()
return {'text':target_text, 'duration':round(end_time-start_time, 2)}
@app.route("/translate_vtt", methods=['POST'])
@cross_origin()
def infer_vtt_indic_en():
model, source_lang, target_lang = get_inference_params()
source_text = request.form['text']
captions = webvtt.read_buffer(StringIO(source_text))
source_sentences = [caption.text.replace('\r', '').replace('\n', ' ') for caption in captions]
start_time = time.time()
target_sentences = model.batch_translate(source_sentences, source_lang, target_lang)
end_time = time.time()
for i in range(len(target_sentences)):
captions[i].text = target_sentences[i]
return {'text': captions.content, 'duration':round(end_time-start_time, 2)}