Harvey-J's picture
Upload 391 files
0f55985 verified
import os
import torch
import time
import math
import ldm_patched.modules.model_base
import ldm_patched.ldm.modules.diffusionmodules.openaimodel
import ldm_patched.modules.model_management
import modules.anisotropic as anisotropic
import ldm_patched.ldm.modules.attention
import ldm_patched.k_diffusion.sampling
import ldm_patched.modules.sd1_clip
import modules.inpaint_worker as inpaint_worker
import ldm_patched.ldm.modules.diffusionmodules.openaimodel
import ldm_patched.ldm.modules.diffusionmodules.model
import ldm_patched.modules.sd
import ldm_patched.controlnet.cldm
import ldm_patched.modules.model_patcher
import ldm_patched.modules.samplers
import ldm_patched.modules.args_parser
import modules.advanced_parameters as advanced_parameters
import warnings
import safetensors.torch
import modules.constants as constants
from ldm_patched.modules.samplers import calc_cond_uncond_batch
from ldm_patched.k_diffusion.sampling import BatchedBrownianTree
from ldm_patched.ldm.modules.diffusionmodules.openaimodel import forward_timestep_embed, apply_control
from modules.patch_precision import patch_all_precision
from modules.patch_clip import patch_all_clip
sharpness = 2.0
adm_scaler_end = 0.3
positive_adm_scale = 1.5
negative_adm_scale = 0.8
adaptive_cfg = 7.0
global_diffusion_progress = 0
eps_record = None
def calculate_weight_patched(self, patches, weight, key):
for p in patches:
alpha = p[0]
v = p[1]
strength_model = p[2]
if strength_model != 1.0:
weight *= strength_model
if isinstance(v, list):
v = (self.calculate_weight(v[1:], v[0].clone(), key),)
if len(v) == 1:
patch_type = "diff"
elif len(v) == 2:
patch_type = v[0]
v = v[1]
if patch_type == "diff":
w1 = v[0]
if alpha != 0.0:
if w1.shape != weight.shape:
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype)
elif patch_type == "lora":
mat1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32)
mat2 = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32)
if v[2] is not None:
alpha *= v[2] / mat2.shape[0]
if v[3] is not None:
mat3 = ldm_patched.modules.model_management.cast_to_device(v[3], weight.device, torch.float32)
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]]
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1),
mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1)
try:
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape(
weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
elif patch_type == "fooocus":
w1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32)
w_min = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32)
w_max = ldm_patched.modules.model_management.cast_to_device(v[2], weight.device, torch.float32)
w1 = (w1 / 255.0) * (w_max - w_min) + w_min
if alpha != 0.0:
if w1.shape != weight.shape:
print("WARNING SHAPE MISMATCH {} FOOOCUS WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape))
else:
weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype)
elif patch_type == "lokr":
w1 = v[0]
w2 = v[1]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
dim = None
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1_a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1_b, weight.device, torch.float32))
else:
w1 = ldm_patched.modules.model_management.cast_to_device(w1, weight.device, torch.float32)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32))
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32))
else:
w2 = ldm_patched.modules.model_management.cast_to_device(w2, weight.device, torch.float32)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
if v[2] is not None and dim is not None:
alpha *= v[2] / dim
try:
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
elif patch_type == "loha":
w1a = v[0]
w1b = v[1]
if v[2] is not None:
alpha *= v[2] / w1b.shape[0]
w2a = v[3]
w2b = v[4]
if v[5] is not None: # cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
ldm_patched.modules.model_management.cast_to_device(t1, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32))
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32))
else:
m1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32))
m2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32),
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32))
try:
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype)
except Exception as e:
print("ERROR", key, e)
elif patch_type == "glora":
if v[4] is not None:
alpha *= v[4] / v[0].shape[0]
a1 = ldm_patched.modules.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32)
a2 = ldm_patched.modules.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32)
b1 = ldm_patched.modules.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32)
b2 = ldm_patched.modules.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32)
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype)
else:
print("patch type not recognized", patch_type, key)
return weight
class BrownianTreeNoiseSamplerPatched:
transform = None
tree = None
@staticmethod
def global_init(x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False):
if ldm_patched.modules.model_management.directml_enabled:
cpu = True
t0, t1 = transform(torch.as_tensor(sigma_min)), transform(torch.as_tensor(sigma_max))
BrownianTreeNoiseSamplerPatched.transform = transform
BrownianTreeNoiseSamplerPatched.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu)
def __init__(self, *args, **kwargs):
pass
@staticmethod
def __call__(sigma, sigma_next):
transform = BrownianTreeNoiseSamplerPatched.transform
tree = BrownianTreeNoiseSamplerPatched.tree
t0, t1 = transform(torch.as_tensor(sigma)), transform(torch.as_tensor(sigma_next))
return tree(t0, t1) / (t1 - t0).abs().sqrt()
def compute_cfg(uncond, cond, cfg_scale, t):
global adaptive_cfg
mimic_cfg = float(adaptive_cfg)
real_cfg = float(cfg_scale)
real_eps = uncond + real_cfg * (cond - uncond)
if cfg_scale > adaptive_cfg:
mimicked_eps = uncond + mimic_cfg * (cond - uncond)
return real_eps * t + mimicked_eps * (1 - t)
else:
return real_eps
def patched_sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options=None, seed=None):
global eps_record
if math.isclose(cond_scale, 1.0) and not model_options.get("disable_cfg1_optimization", False):
final_x0 = calc_cond_uncond_batch(model, cond, None, x, timestep, model_options)[0]
if eps_record is not None:
eps_record = ((x - final_x0) / timestep).cpu()
return final_x0
positive_x0, negative_x0 = calc_cond_uncond_batch(model, cond, uncond, x, timestep, model_options)
positive_eps = x - positive_x0
negative_eps = x - negative_x0
alpha = 0.001 * sharpness * global_diffusion_progress
positive_eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0)
positive_eps_degraded_weighted = positive_eps_degraded * alpha + positive_eps * (1.0 - alpha)
final_eps = compute_cfg(uncond=negative_eps, cond=positive_eps_degraded_weighted,
cfg_scale=cond_scale, t=global_diffusion_progress)
if eps_record is not None:
eps_record = (final_eps / timestep).cpu()
return x - final_eps
def round_to_64(x):
h = float(x)
h = h / 64.0
h = round(h)
h = int(h)
h = h * 64
return h
def sdxl_encode_adm_patched(self, **kwargs):
global positive_adm_scale, negative_adm_scale
clip_pooled = ldm_patched.modules.model_base.sdxl_pooled(kwargs, self.noise_augmentor)
width = kwargs.get("width", 1024)
height = kwargs.get("height", 1024)
target_width = width
target_height = height
if kwargs.get("prompt_type", "") == "negative":
width = float(width) * negative_adm_scale
height = float(height) * negative_adm_scale
elif kwargs.get("prompt_type", "") == "positive":
width = float(width) * positive_adm_scale
height = float(height) * positive_adm_scale
def embedder(number_list):
h = self.embedder(torch.tensor(number_list, dtype=torch.float32))
h = torch.flatten(h).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1)
return h
width, height = int(width), int(height)
target_width, target_height = round_to_64(target_width), round_to_64(target_height)
adm_emphasized = embedder([height, width, 0, 0, target_height, target_width])
adm_consistent = embedder([target_height, target_width, 0, 0, target_height, target_width])
clip_pooled = clip_pooled.to(adm_emphasized)
final_adm = torch.cat((clip_pooled, adm_emphasized, clip_pooled, adm_consistent), dim=1)
return final_adm
def patched_KSamplerX0Inpaint_forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None):
if inpaint_worker.current_task is not None:
latent_processor = self.inner_model.inner_model.process_latent_in
inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x)
inpaint_mask = inpaint_worker.current_task.latent_mask.to(x)
if getattr(self, 'energy_generator', None) is None:
# avoid bad results by using different seeds.
self.energy_generator = torch.Generator(device='cpu').manual_seed((seed + 1) % constants.MAX_SEED)
energy_sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(x.shape) - 1))
current_energy = torch.randn(
x.size(), dtype=x.dtype, generator=self.energy_generator, device="cpu").to(x) * energy_sigma
x = x * inpaint_mask + (inpaint_latent + current_energy) * (1.0 - inpaint_mask)
out = self.inner_model(x, sigma,
cond=cond,
uncond=uncond,
cond_scale=cond_scale,
model_options=model_options,
seed=seed)
out = out * inpaint_mask + inpaint_latent * (1.0 - inpaint_mask)
else:
out = self.inner_model(x, sigma,
cond=cond,
uncond=uncond,
cond_scale=cond_scale,
model_options=model_options,
seed=seed)
return out
def timed_adm(y, timesteps):
if isinstance(y, torch.Tensor) and int(y.dim()) == 2 and int(y.shape[1]) == 5632:
y_mask = (timesteps > 999.0 * (1.0 - float(adm_scaler_end))).to(y)[..., None]
y_with_adm = y[..., :2816].clone()
y_without_adm = y[..., 2816:].clone()
return y_with_adm * y_mask + y_without_adm * (1.0 - y_mask)
return y
def patched_cldm_forward(self, x, hint, timesteps, context, y=None, **kwargs):
t_emb = ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
guided_hint = self.input_hint_block(hint, emb, context)
y = timed_adm(y, timesteps)
outs = []
hs = []
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
outs.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context))
if advanced_parameters.controlnet_softness > 0:
for i in range(10):
k = 1.0 - float(i) / 9.0
outs[i] = outs[i] * (1.0 - advanced_parameters.controlnet_softness * k)
return outs
def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs):
global global_diffusion_progress
self.current_step = 1.0 - timesteps.to(x) / 999.0
global_diffusion_progress = float(self.current_step.detach().cpu().numpy().tolist()[0])
y = timed_adm(y, timesteps)
transformer_options["original_shape"] = list(x.shape)
transformer_options["transformer_index"] = 0
transformer_patches = transformer_options.get("patches", {})
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames)
image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator)
time_context = kwargs.get("time_context", None)
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x
for id, module in enumerate(self.input_blocks):
transformer_options["block"] = ("input", id)
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
h = apply_control(h, control, 'input')
if "input_block_patch" in transformer_patches:
patch = transformer_patches["input_block_patch"]
for p in patch:
h = p(h, transformer_options)
hs.append(h)
if "input_block_patch_after_skip" in transformer_patches:
patch = transformer_patches["input_block_patch_after_skip"]
for p in patch:
h = p(h, transformer_options)
transformer_options["block"] = ("middle", 0)
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
h = apply_control(h, control, 'middle')
for id, module in enumerate(self.output_blocks):
transformer_options["block"] = ("output", id)
hsp = hs.pop()
hsp = apply_control(hsp, control, 'output')
if "output_block_patch" in transformer_patches:
patch = transformer_patches["output_block_patch"]
for p in patch:
h, hsp = p(h, hsp, transformer_options)
h = torch.cat([h, hsp], dim=1)
del hsp
if len(hs) > 0:
output_shape = hs[-1].shape
else:
output_shape = None
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator)
h = h.type(x.dtype)
if self.predict_codebook_ids:
return self.id_predictor(h)
else:
return self.out(h)
def patched_load_models_gpu(*args, **kwargs):
execution_start_time = time.perf_counter()
y = ldm_patched.modules.model_management.load_models_gpu_origin(*args, **kwargs)
moving_time = time.perf_counter() - execution_start_time
if moving_time > 0.1:
print(f'[Fooocus Model Management] Moving model(s) has taken {moving_time:.2f} seconds')
return y
def build_loaded(module, loader_name):
original_loader_name = loader_name + '_origin'
if not hasattr(module, original_loader_name):
setattr(module, original_loader_name, getattr(module, loader_name))
original_loader = getattr(module, original_loader_name)
def loader(*args, **kwargs):
result = None
try:
result = original_loader(*args, **kwargs)
except Exception as e:
result = None
exp = str(e) + '\n'
for path in list(args) + list(kwargs.values()):
if isinstance(path, str):
if os.path.exists(path):
exp += f'File corrupted: {path} \n'
corrupted_backup_file = path + '.corrupted'
if os.path.exists(corrupted_backup_file):
os.remove(corrupted_backup_file)
os.replace(path, corrupted_backup_file)
if os.path.exists(path):
os.remove(path)
exp += f'Fooocus has tried to move the corrupted file to {corrupted_backup_file} \n'
exp += f'You may try again now and Fooocus will download models again. \n'
raise ValueError(exp)
return result
setattr(module, loader_name, loader)
return
def patch_all():
if ldm_patched.modules.model_management.directml_enabled:
ldm_patched.modules.model_management.lowvram_available = True
ldm_patched.modules.model_management.OOM_EXCEPTION = Exception
patch_all_precision()
patch_all_clip()
if not hasattr(ldm_patched.modules.model_management, 'load_models_gpu_origin'):
ldm_patched.modules.model_management.load_models_gpu_origin = ldm_patched.modules.model_management.load_models_gpu
ldm_patched.modules.model_management.load_models_gpu = patched_load_models_gpu
ldm_patched.modules.model_patcher.ModelPatcher.calculate_weight = calculate_weight_patched
ldm_patched.controlnet.cldm.ControlNet.forward = patched_cldm_forward
ldm_patched.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = patched_unet_forward
ldm_patched.modules.model_base.SDXL.encode_adm = sdxl_encode_adm_patched
ldm_patched.modules.samplers.KSamplerX0Inpaint.forward = patched_KSamplerX0Inpaint_forward
ldm_patched.k_diffusion.sampling.BrownianTreeNoiseSampler = BrownianTreeNoiseSamplerPatched
ldm_patched.modules.samplers.sampling_function = patched_sampling_function
warnings.filterwarnings(action='ignore', module='torchsde')
build_loaded(safetensors.torch, 'load_file')
build_loaded(torch, 'load')
return