Spaces:
Running
Running
import os | |
import torch | |
import time | |
import math | |
import ldm_patched.modules.model_base | |
import ldm_patched.ldm.modules.diffusionmodules.openaimodel | |
import ldm_patched.modules.model_management | |
import modules.anisotropic as anisotropic | |
import ldm_patched.ldm.modules.attention | |
import ldm_patched.k_diffusion.sampling | |
import ldm_patched.modules.sd1_clip | |
import modules.inpaint_worker as inpaint_worker | |
import ldm_patched.ldm.modules.diffusionmodules.openaimodel | |
import ldm_patched.ldm.modules.diffusionmodules.model | |
import ldm_patched.modules.sd | |
import ldm_patched.controlnet.cldm | |
import ldm_patched.modules.model_patcher | |
import ldm_patched.modules.samplers | |
import ldm_patched.modules.args_parser | |
import modules.advanced_parameters as advanced_parameters | |
import warnings | |
import safetensors.torch | |
import modules.constants as constants | |
from ldm_patched.modules.samplers import calc_cond_uncond_batch | |
from ldm_patched.k_diffusion.sampling import BatchedBrownianTree | |
from ldm_patched.ldm.modules.diffusionmodules.openaimodel import forward_timestep_embed, apply_control | |
from modules.patch_precision import patch_all_precision | |
from modules.patch_clip import patch_all_clip | |
sharpness = 2.0 | |
adm_scaler_end = 0.3 | |
positive_adm_scale = 1.5 | |
negative_adm_scale = 0.8 | |
adaptive_cfg = 7.0 | |
global_diffusion_progress = 0 | |
eps_record = None | |
def calculate_weight_patched(self, patches, weight, key): | |
for p in patches: | |
alpha = p[0] | |
v = p[1] | |
strength_model = p[2] | |
if strength_model != 1.0: | |
weight *= strength_model | |
if isinstance(v, list): | |
v = (self.calculate_weight(v[1:], v[0].clone(), key),) | |
if len(v) == 1: | |
patch_type = "diff" | |
elif len(v) == 2: | |
patch_type = v[0] | |
v = v[1] | |
if patch_type == "diff": | |
w1 = v[0] | |
if alpha != 0.0: | |
if w1.shape != weight.shape: | |
print("WARNING SHAPE MISMATCH {} WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) | |
else: | |
weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype) | |
elif patch_type == "lora": | |
mat1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32) | |
mat2 = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32) | |
if v[2] is not None: | |
alpha *= v[2] / mat2.shape[0] | |
if v[3] is not None: | |
mat3 = ldm_patched.modules.model_management.cast_to_device(v[3], weight.device, torch.float32) | |
final_shape = [mat2.shape[1], mat2.shape[0], mat3.shape[2], mat3.shape[3]] | |
mat2 = torch.mm(mat2.transpose(0, 1).flatten(start_dim=1), | |
mat3.transpose(0, 1).flatten(start_dim=1)).reshape(final_shape).transpose(0, 1) | |
try: | |
weight += (alpha * torch.mm(mat1.flatten(start_dim=1), mat2.flatten(start_dim=1))).reshape( | |
weight.shape).type(weight.dtype) | |
except Exception as e: | |
print("ERROR", key, e) | |
elif patch_type == "fooocus": | |
w1 = ldm_patched.modules.model_management.cast_to_device(v[0], weight.device, torch.float32) | |
w_min = ldm_patched.modules.model_management.cast_to_device(v[1], weight.device, torch.float32) | |
w_max = ldm_patched.modules.model_management.cast_to_device(v[2], weight.device, torch.float32) | |
w1 = (w1 / 255.0) * (w_max - w_min) + w_min | |
if alpha != 0.0: | |
if w1.shape != weight.shape: | |
print("WARNING SHAPE MISMATCH {} FOOOCUS WEIGHT NOT MERGED {} != {}".format(key, w1.shape, weight.shape)) | |
else: | |
weight += alpha * ldm_patched.modules.model_management.cast_to_device(w1, weight.device, weight.dtype) | |
elif patch_type == "lokr": | |
w1 = v[0] | |
w2 = v[1] | |
w1_a = v[3] | |
w1_b = v[4] | |
w2_a = v[5] | |
w2_b = v[6] | |
t2 = v[7] | |
dim = None | |
if w1 is None: | |
dim = w1_b.shape[0] | |
w1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1_a, weight.device, torch.float32), | |
ldm_patched.modules.model_management.cast_to_device(w1_b, weight.device, torch.float32)) | |
else: | |
w1 = ldm_patched.modules.model_management.cast_to_device(w1, weight.device, torch.float32) | |
if w2 is None: | |
dim = w2_b.shape[0] | |
if t2 is None: | |
w2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32), | |
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32)) | |
else: | |
w2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32), | |
ldm_patched.modules.model_management.cast_to_device(w2_b, weight.device, torch.float32), | |
ldm_patched.modules.model_management.cast_to_device(w2_a, weight.device, torch.float32)) | |
else: | |
w2 = ldm_patched.modules.model_management.cast_to_device(w2, weight.device, torch.float32) | |
if len(w2.shape) == 4: | |
w1 = w1.unsqueeze(2).unsqueeze(2) | |
if v[2] is not None and dim is not None: | |
alpha *= v[2] / dim | |
try: | |
weight += alpha * torch.kron(w1, w2).reshape(weight.shape).type(weight.dtype) | |
except Exception as e: | |
print("ERROR", key, e) | |
elif patch_type == "loha": | |
w1a = v[0] | |
w1b = v[1] | |
if v[2] is not None: | |
alpha *= v[2] / w1b.shape[0] | |
w2a = v[3] | |
w2b = v[4] | |
if v[5] is not None: # cp decomposition | |
t1 = v[5] | |
t2 = v[6] | |
m1 = torch.einsum('i j k l, j r, i p -> p r k l', | |
ldm_patched.modules.model_management.cast_to_device(t1, weight.device, torch.float32), | |
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32), | |
ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32)) | |
m2 = torch.einsum('i j k l, j r, i p -> p r k l', | |
ldm_patched.modules.model_management.cast_to_device(t2, weight.device, torch.float32), | |
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32), | |
ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32)) | |
else: | |
m1 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w1a, weight.device, torch.float32), | |
ldm_patched.modules.model_management.cast_to_device(w1b, weight.device, torch.float32)) | |
m2 = torch.mm(ldm_patched.modules.model_management.cast_to_device(w2a, weight.device, torch.float32), | |
ldm_patched.modules.model_management.cast_to_device(w2b, weight.device, torch.float32)) | |
try: | |
weight += (alpha * m1 * m2).reshape(weight.shape).type(weight.dtype) | |
except Exception as e: | |
print("ERROR", key, e) | |
elif patch_type == "glora": | |
if v[4] is not None: | |
alpha *= v[4] / v[0].shape[0] | |
a1 = ldm_patched.modules.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, torch.float32) | |
a2 = ldm_patched.modules.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, torch.float32) | |
b1 = ldm_patched.modules.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, torch.float32) | |
b2 = ldm_patched.modules.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, torch.float32) | |
weight += ((torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1), a2), a1)) * alpha).reshape(weight.shape).type(weight.dtype) | |
else: | |
print("patch type not recognized", patch_type, key) | |
return weight | |
class BrownianTreeNoiseSamplerPatched: | |
transform = None | |
tree = None | |
def global_init(x, sigma_min, sigma_max, seed=None, transform=lambda x: x, cpu=False): | |
if ldm_patched.modules.model_management.directml_enabled: | |
cpu = True | |
t0, t1 = transform(torch.as_tensor(sigma_min)), transform(torch.as_tensor(sigma_max)) | |
BrownianTreeNoiseSamplerPatched.transform = transform | |
BrownianTreeNoiseSamplerPatched.tree = BatchedBrownianTree(x, t0, t1, seed, cpu=cpu) | |
def __init__(self, *args, **kwargs): | |
pass | |
def __call__(sigma, sigma_next): | |
transform = BrownianTreeNoiseSamplerPatched.transform | |
tree = BrownianTreeNoiseSamplerPatched.tree | |
t0, t1 = transform(torch.as_tensor(sigma)), transform(torch.as_tensor(sigma_next)) | |
return tree(t0, t1) / (t1 - t0).abs().sqrt() | |
def compute_cfg(uncond, cond, cfg_scale, t): | |
global adaptive_cfg | |
mimic_cfg = float(adaptive_cfg) | |
real_cfg = float(cfg_scale) | |
real_eps = uncond + real_cfg * (cond - uncond) | |
if cfg_scale > adaptive_cfg: | |
mimicked_eps = uncond + mimic_cfg * (cond - uncond) | |
return real_eps * t + mimicked_eps * (1 - t) | |
else: | |
return real_eps | |
def patched_sampling_function(model, x, timestep, uncond, cond, cond_scale, model_options=None, seed=None): | |
global eps_record | |
if math.isclose(cond_scale, 1.0) and not model_options.get("disable_cfg1_optimization", False): | |
final_x0 = calc_cond_uncond_batch(model, cond, None, x, timestep, model_options)[0] | |
if eps_record is not None: | |
eps_record = ((x - final_x0) / timestep).cpu() | |
return final_x0 | |
positive_x0, negative_x0 = calc_cond_uncond_batch(model, cond, uncond, x, timestep, model_options) | |
positive_eps = x - positive_x0 | |
negative_eps = x - negative_x0 | |
alpha = 0.001 * sharpness * global_diffusion_progress | |
positive_eps_degraded = anisotropic.adaptive_anisotropic_filter(x=positive_eps, g=positive_x0) | |
positive_eps_degraded_weighted = positive_eps_degraded * alpha + positive_eps * (1.0 - alpha) | |
final_eps = compute_cfg(uncond=negative_eps, cond=positive_eps_degraded_weighted, | |
cfg_scale=cond_scale, t=global_diffusion_progress) | |
if eps_record is not None: | |
eps_record = (final_eps / timestep).cpu() | |
return x - final_eps | |
def round_to_64(x): | |
h = float(x) | |
h = h / 64.0 | |
h = round(h) | |
h = int(h) | |
h = h * 64 | |
return h | |
def sdxl_encode_adm_patched(self, **kwargs): | |
global positive_adm_scale, negative_adm_scale | |
clip_pooled = ldm_patched.modules.model_base.sdxl_pooled(kwargs, self.noise_augmentor) | |
width = kwargs.get("width", 1024) | |
height = kwargs.get("height", 1024) | |
target_width = width | |
target_height = height | |
if kwargs.get("prompt_type", "") == "negative": | |
width = float(width) * negative_adm_scale | |
height = float(height) * negative_adm_scale | |
elif kwargs.get("prompt_type", "") == "positive": | |
width = float(width) * positive_adm_scale | |
height = float(height) * positive_adm_scale | |
def embedder(number_list): | |
h = self.embedder(torch.tensor(number_list, dtype=torch.float32)) | |
h = torch.flatten(h).unsqueeze(dim=0).repeat(clip_pooled.shape[0], 1) | |
return h | |
width, height = int(width), int(height) | |
target_width, target_height = round_to_64(target_width), round_to_64(target_height) | |
adm_emphasized = embedder([height, width, 0, 0, target_height, target_width]) | |
adm_consistent = embedder([target_height, target_width, 0, 0, target_height, target_width]) | |
clip_pooled = clip_pooled.to(adm_emphasized) | |
final_adm = torch.cat((clip_pooled, adm_emphasized, clip_pooled, adm_consistent), dim=1) | |
return final_adm | |
def patched_KSamplerX0Inpaint_forward(self, x, sigma, uncond, cond, cond_scale, denoise_mask, model_options={}, seed=None): | |
if inpaint_worker.current_task is not None: | |
latent_processor = self.inner_model.inner_model.process_latent_in | |
inpaint_latent = latent_processor(inpaint_worker.current_task.latent).to(x) | |
inpaint_mask = inpaint_worker.current_task.latent_mask.to(x) | |
if getattr(self, 'energy_generator', None) is None: | |
# avoid bad results by using different seeds. | |
self.energy_generator = torch.Generator(device='cpu').manual_seed((seed + 1) % constants.MAX_SEED) | |
energy_sigma = sigma.reshape([sigma.shape[0]] + [1] * (len(x.shape) - 1)) | |
current_energy = torch.randn( | |
x.size(), dtype=x.dtype, generator=self.energy_generator, device="cpu").to(x) * energy_sigma | |
x = x * inpaint_mask + (inpaint_latent + current_energy) * (1.0 - inpaint_mask) | |
out = self.inner_model(x, sigma, | |
cond=cond, | |
uncond=uncond, | |
cond_scale=cond_scale, | |
model_options=model_options, | |
seed=seed) | |
out = out * inpaint_mask + inpaint_latent * (1.0 - inpaint_mask) | |
else: | |
out = self.inner_model(x, sigma, | |
cond=cond, | |
uncond=uncond, | |
cond_scale=cond_scale, | |
model_options=model_options, | |
seed=seed) | |
return out | |
def timed_adm(y, timesteps): | |
if isinstance(y, torch.Tensor) and int(y.dim()) == 2 and int(y.shape[1]) == 5632: | |
y_mask = (timesteps > 999.0 * (1.0 - float(adm_scaler_end))).to(y)[..., None] | |
y_with_adm = y[..., :2816].clone() | |
y_without_adm = y[..., 2816:].clone() | |
return y_with_adm * y_mask + y_without_adm * (1.0 - y_mask) | |
return y | |
def patched_cldm_forward(self, x, hint, timesteps, context, y=None, **kwargs): | |
t_emb = ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) | |
emb = self.time_embed(t_emb) | |
guided_hint = self.input_hint_block(hint, emb, context) | |
y = timed_adm(y, timesteps) | |
outs = [] | |
hs = [] | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
h = x | |
for module, zero_conv in zip(self.input_blocks, self.zero_convs): | |
if guided_hint is not None: | |
h = module(h, emb, context) | |
h += guided_hint | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
outs.append(zero_conv(h, emb, context)) | |
h = self.middle_block(h, emb, context) | |
outs.append(self.middle_block_out(h, emb, context)) | |
if advanced_parameters.controlnet_softness > 0: | |
for i in range(10): | |
k = 1.0 - float(i) / 9.0 | |
outs[i] = outs[i] * (1.0 - advanced_parameters.controlnet_softness * k) | |
return outs | |
def patched_unet_forward(self, x, timesteps=None, context=None, y=None, control=None, transformer_options={}, **kwargs): | |
global global_diffusion_progress | |
self.current_step = 1.0 - timesteps.to(x) / 999.0 | |
global_diffusion_progress = float(self.current_step.detach().cpu().numpy().tolist()[0]) | |
y = timed_adm(y, timesteps) | |
transformer_options["original_shape"] = list(x.shape) | |
transformer_options["transformer_index"] = 0 | |
transformer_patches = transformer_options.get("patches", {}) | |
num_video_frames = kwargs.get("num_video_frames", self.default_num_video_frames) | |
image_only_indicator = kwargs.get("image_only_indicator", self.default_image_only_indicator) | |
time_context = kwargs.get("time_context", None) | |
assert (y is not None) == ( | |
self.num_classes is not None | |
), "must specify y if and only if the model is class-conditional" | |
hs = [] | |
t_emb = ldm_patched.ldm.modules.diffusionmodules.openaimodel.timestep_embedding(timesteps, self.model_channels, repeat_only=False).to(x.dtype) | |
emb = self.time_embed(t_emb) | |
if self.num_classes is not None: | |
assert y.shape[0] == x.shape[0] | |
emb = emb + self.label_emb(y) | |
h = x | |
for id, module in enumerate(self.input_blocks): | |
transformer_options["block"] = ("input", id) | |
h = forward_timestep_embed(module, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) | |
h = apply_control(h, control, 'input') | |
if "input_block_patch" in transformer_patches: | |
patch = transformer_patches["input_block_patch"] | |
for p in patch: | |
h = p(h, transformer_options) | |
hs.append(h) | |
if "input_block_patch_after_skip" in transformer_patches: | |
patch = transformer_patches["input_block_patch_after_skip"] | |
for p in patch: | |
h = p(h, transformer_options) | |
transformer_options["block"] = ("middle", 0) | |
h = forward_timestep_embed(self.middle_block, h, emb, context, transformer_options, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) | |
h = apply_control(h, control, 'middle') | |
for id, module in enumerate(self.output_blocks): | |
transformer_options["block"] = ("output", id) | |
hsp = hs.pop() | |
hsp = apply_control(hsp, control, 'output') | |
if "output_block_patch" in transformer_patches: | |
patch = transformer_patches["output_block_patch"] | |
for p in patch: | |
h, hsp = p(h, hsp, transformer_options) | |
h = torch.cat([h, hsp], dim=1) | |
del hsp | |
if len(hs) > 0: | |
output_shape = hs[-1].shape | |
else: | |
output_shape = None | |
h = forward_timestep_embed(module, h, emb, context, transformer_options, output_shape, time_context=time_context, num_video_frames=num_video_frames, image_only_indicator=image_only_indicator) | |
h = h.type(x.dtype) | |
if self.predict_codebook_ids: | |
return self.id_predictor(h) | |
else: | |
return self.out(h) | |
def patched_load_models_gpu(*args, **kwargs): | |
execution_start_time = time.perf_counter() | |
y = ldm_patched.modules.model_management.load_models_gpu_origin(*args, **kwargs) | |
moving_time = time.perf_counter() - execution_start_time | |
if moving_time > 0.1: | |
print(f'[Fooocus Model Management] Moving model(s) has taken {moving_time:.2f} seconds') | |
return y | |
def build_loaded(module, loader_name): | |
original_loader_name = loader_name + '_origin' | |
if not hasattr(module, original_loader_name): | |
setattr(module, original_loader_name, getattr(module, loader_name)) | |
original_loader = getattr(module, original_loader_name) | |
def loader(*args, **kwargs): | |
result = None | |
try: | |
result = original_loader(*args, **kwargs) | |
except Exception as e: | |
result = None | |
exp = str(e) + '\n' | |
for path in list(args) + list(kwargs.values()): | |
if isinstance(path, str): | |
if os.path.exists(path): | |
exp += f'File corrupted: {path} \n' | |
corrupted_backup_file = path + '.corrupted' | |
if os.path.exists(corrupted_backup_file): | |
os.remove(corrupted_backup_file) | |
os.replace(path, corrupted_backup_file) | |
if os.path.exists(path): | |
os.remove(path) | |
exp += f'Fooocus has tried to move the corrupted file to {corrupted_backup_file} \n' | |
exp += f'You may try again now and Fooocus will download models again. \n' | |
raise ValueError(exp) | |
return result | |
setattr(module, loader_name, loader) | |
return | |
def patch_all(): | |
if ldm_patched.modules.model_management.directml_enabled: | |
ldm_patched.modules.model_management.lowvram_available = True | |
ldm_patched.modules.model_management.OOM_EXCEPTION = Exception | |
patch_all_precision() | |
patch_all_clip() | |
if not hasattr(ldm_patched.modules.model_management, 'load_models_gpu_origin'): | |
ldm_patched.modules.model_management.load_models_gpu_origin = ldm_patched.modules.model_management.load_models_gpu | |
ldm_patched.modules.model_management.load_models_gpu = patched_load_models_gpu | |
ldm_patched.modules.model_patcher.ModelPatcher.calculate_weight = calculate_weight_patched | |
ldm_patched.controlnet.cldm.ControlNet.forward = patched_cldm_forward | |
ldm_patched.ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = patched_unet_forward | |
ldm_patched.modules.model_base.SDXL.encode_adm = sdxl_encode_adm_patched | |
ldm_patched.modules.samplers.KSamplerX0Inpaint.forward = patched_KSamplerX0Inpaint_forward | |
ldm_patched.k_diffusion.sampling.BrownianTreeNoiseSampler = BrownianTreeNoiseSamplerPatched | |
ldm_patched.modules.samplers.sampling_function = patched_sampling_function | |
warnings.filterwarnings(action='ignore', module='torchsde') | |
build_loaded(safetensors.torch, 'load_file') | |
build_loaded(torch, 'load') | |
return | |