Spaces:
Running
Running
import torch | |
import ldm_patched.modules.samplers | |
import ldm_patched.modules.model_management | |
from collections import namedtuple | |
from ldm_patched.contrib.external_custom_sampler import SDTurboScheduler | |
from ldm_patched.k_diffusion import sampling as k_diffusion_sampling | |
from ldm_patched.modules.samplers import normal_scheduler, simple_scheduler, ddim_scheduler | |
from ldm_patched.modules.model_base import SDXLRefiner, SDXL | |
from ldm_patched.modules.conds import CONDRegular | |
from ldm_patched.modules.sample import get_additional_models, get_models_from_cond, cleanup_additional_models | |
from ldm_patched.modules.samplers import resolve_areas_and_cond_masks, wrap_model, calculate_start_end_timesteps, \ | |
create_cond_with_same_area_if_none, pre_run_control, apply_empty_x_to_equal_area, encode_model_conds | |
current_refiner = None | |
refiner_switch_step = -1 | |
def clip_separate_inner(c, p, target_model=None, target_clip=None): | |
if target_model is None or isinstance(target_model, SDXLRefiner): | |
c = c[..., -1280:].clone() | |
elif isinstance(target_model, SDXL): | |
c = c.clone() | |
else: | |
p = None | |
c = c[..., :768].clone() | |
final_layer_norm = target_clip.cond_stage_model.clip_l.transformer.text_model.final_layer_norm | |
final_layer_norm_origin_device = final_layer_norm.weight.device | |
final_layer_norm_origin_dtype = final_layer_norm.weight.dtype | |
c_origin_device = c.device | |
c_origin_dtype = c.dtype | |
final_layer_norm.to(device='cpu', dtype=torch.float32) | |
c = c.to(device='cpu', dtype=torch.float32) | |
c = torch.chunk(c, int(c.size(1)) // 77, 1) | |
c = [final_layer_norm(ci) for ci in c] | |
c = torch.cat(c, dim=1) | |
final_layer_norm.to(device=final_layer_norm_origin_device, dtype=final_layer_norm_origin_dtype) | |
c = c.to(device=c_origin_device, dtype=c_origin_dtype) | |
return c, p | |
def clip_separate(cond, target_model=None, target_clip=None): | |
results = [] | |
for c, px in cond: | |
p = px.get('pooled_output', None) | |
c, p = clip_separate_inner(c, p, target_model=target_model, target_clip=target_clip) | |
p = {} if p is None else {'pooled_output': p.clone()} | |
results.append([c, p]) | |
return results | |
def clip_separate_after_preparation(cond, target_model=None, target_clip=None): | |
results = [] | |
for x in cond: | |
p = x.get('pooled_output', None) | |
c = x['model_conds']['c_crossattn'].cond | |
c, p = clip_separate_inner(c, p, target_model=target_model, target_clip=target_clip) | |
result = {'model_conds': {'c_crossattn': CONDRegular(c)}} | |
if p is not None: | |
result['pooled_output'] = p.clone() | |
results.append(result) | |
return results | |
def sample_hacked(model, noise, positive, negative, cfg, device, sampler, sigmas, model_options={}, latent_image=None, denoise_mask=None, callback=None, disable_pbar=False, seed=None): | |
global current_refiner | |
positive = positive[:] | |
negative = negative[:] | |
resolve_areas_and_cond_masks(positive, noise.shape[2], noise.shape[3], device) | |
resolve_areas_and_cond_masks(negative, noise.shape[2], noise.shape[3], device) | |
model_wrap = wrap_model(model) | |
calculate_start_end_timesteps(model, negative) | |
calculate_start_end_timesteps(model, positive) | |
if latent_image is not None: | |
latent_image = model.process_latent_in(latent_image) | |
if hasattr(model, 'extra_conds'): | |
positive = encode_model_conds(model.extra_conds, positive, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask) | |
negative = encode_model_conds(model.extra_conds, negative, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask) | |
#make sure each cond area has an opposite one with the same area | |
for c in positive: | |
create_cond_with_same_area_if_none(negative, c) | |
for c in negative: | |
create_cond_with_same_area_if_none(positive, c) | |
# pre_run_control(model, negative + positive) | |
pre_run_control(model, positive) # negative is not necessary in Fooocus, 0.5s faster. | |
apply_empty_x_to_equal_area(list(filter(lambda c: c.get('control_apply_to_uncond', False) == True, positive)), negative, 'control', lambda cond_cnets, x: cond_cnets[x]) | |
apply_empty_x_to_equal_area(positive, negative, 'gligen', lambda cond_cnets, x: cond_cnets[x]) | |
extra_args = {"cond":positive, "uncond":negative, "cond_scale": cfg, "model_options": model_options, "seed":seed} | |
if current_refiner is not None and hasattr(current_refiner.model, 'extra_conds'): | |
positive_refiner = clip_separate_after_preparation(positive, target_model=current_refiner.model) | |
negative_refiner = clip_separate_after_preparation(negative, target_model=current_refiner.model) | |
positive_refiner = encode_model_conds(current_refiner.model.extra_conds, positive_refiner, noise, device, "positive", latent_image=latent_image, denoise_mask=denoise_mask) | |
negative_refiner = encode_model_conds(current_refiner.model.extra_conds, negative_refiner, noise, device, "negative", latent_image=latent_image, denoise_mask=denoise_mask) | |
def refiner_switch(): | |
cleanup_additional_models(set(get_models_from_cond(positive, "control") + get_models_from_cond(negative, "control"))) | |
extra_args["cond"] = positive_refiner | |
extra_args["uncond"] = negative_refiner | |
# clear ip-adapter for refiner | |
extra_args['model_options'] = {k: {} if k == 'transformer_options' else v for k, v in extra_args['model_options'].items()} | |
models, inference_memory = get_additional_models(positive_refiner, negative_refiner, current_refiner.model_dtype()) | |
ldm_patched.modules.model_management.load_models_gpu( | |
[current_refiner] + models, | |
model.memory_required([noise.shape[0] * 2] + list(noise.shape[1:])) + inference_memory) | |
model_wrap.inner_model = current_refiner.model | |
print('Refiner Swapped') | |
return | |
def callback_wrap(step, x0, x, total_steps): | |
if step == refiner_switch_step and current_refiner is not None: | |
refiner_switch() | |
if callback is not None: | |
# residual_noise_preview = x - x0 | |
# residual_noise_preview /= residual_noise_preview.std() | |
# residual_noise_preview *= x0.std() | |
callback(step, x0, x, total_steps) | |
samples = sampler.sample(model_wrap, sigmas, extra_args, callback_wrap, noise, latent_image, denoise_mask, disable_pbar) | |
return model.process_latent_out(samples.to(torch.float32)) | |
def calculate_sigmas_scheduler_hacked(model, scheduler_name, steps): | |
if scheduler_name == "karras": | |
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max)) | |
elif scheduler_name == "exponential": | |
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=float(model.model_sampling.sigma_min), sigma_max=float(model.model_sampling.sigma_max)) | |
elif scheduler_name == "normal": | |
sigmas = normal_scheduler(model, steps) | |
elif scheduler_name == "simple": | |
sigmas = simple_scheduler(model, steps) | |
elif scheduler_name == "ddim_uniform": | |
sigmas = ddim_scheduler(model, steps) | |
elif scheduler_name == "sgm_uniform": | |
sigmas = normal_scheduler(model, steps, sgm=True) | |
elif scheduler_name == "turbo": | |
sigmas = SDTurboScheduler().get_sigmas(namedtuple('Patcher', ['model'])(model=model), steps=steps, denoise=1.0)[0] | |
else: | |
raise TypeError("error invalid scheduler") | |
return sigmas | |
ldm_patched.modules.samplers.calculate_sigmas_scheduler = calculate_sigmas_scheduler_hacked | |
ldm_patched.modules.samplers.sample = sample_hacked | |