Spaces:
Running
Running
import numpy as np | |
import datetime | |
import random | |
import math | |
import os | |
import cv2 | |
from PIL import Image | |
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) | |
def erode_or_dilate(x, k): | |
k = int(k) | |
if k > 0: | |
return cv2.dilate(x, kernel=np.ones(shape=(3, 3), dtype=np.uint8), iterations=k) | |
if k < 0: | |
return cv2.erode(x, kernel=np.ones(shape=(3, 3), dtype=np.uint8), iterations=-k) | |
return x | |
def resample_image(im, width, height): | |
im = Image.fromarray(im) | |
im = im.resize((int(width), int(height)), resample=LANCZOS) | |
return np.array(im) | |
def resize_image(im, width, height, resize_mode=1): | |
""" | |
Resizes an image with the specified resize_mode, width, and height. | |
Args: | |
resize_mode: The mode to use when resizing the image. | |
0: Resize the image to the specified width and height. | |
1: Resize the image to fill the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, cropping the excess. | |
2: Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center the image within the dimensions, filling empty with data from image. | |
im: The image to resize. | |
width: The width to resize the image to. | |
height: The height to resize the image to. | |
""" | |
im = Image.fromarray(im) | |
def resize(im, w, h): | |
return im.resize((w, h), resample=LANCZOS) | |
if resize_mode == 0: | |
res = resize(im, width, height) | |
elif resize_mode == 1: | |
ratio = width / height | |
src_ratio = im.width / im.height | |
src_w = width if ratio > src_ratio else im.width * height // im.height | |
src_h = height if ratio <= src_ratio else im.height * width // im.width | |
resized = resize(im, src_w, src_h) | |
res = Image.new("RGB", (width, height)) | |
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) | |
else: | |
ratio = width / height | |
src_ratio = im.width / im.height | |
src_w = width if ratio < src_ratio else im.width * height // im.height | |
src_h = height if ratio >= src_ratio else im.height * width // im.width | |
resized = resize(im, src_w, src_h) | |
res = Image.new("RGB", (width, height)) | |
res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2)) | |
if ratio < src_ratio: | |
fill_height = height // 2 - src_h // 2 | |
if fill_height > 0: | |
res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0)) | |
res.paste(resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)), box=(0, fill_height + src_h)) | |
elif ratio > src_ratio: | |
fill_width = width // 2 - src_w // 2 | |
if fill_width > 0: | |
res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0)) | |
res.paste(resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)), box=(fill_width + src_w, 0)) | |
return np.array(res) | |
def get_shape_ceil(h, w): | |
return math.ceil(((h * w) ** 0.5) / 64.0) * 64.0 | |
def get_image_shape_ceil(im): | |
H, W = im.shape[:2] | |
return get_shape_ceil(H, W) | |
def set_image_shape_ceil(im, shape_ceil): | |
shape_ceil = float(shape_ceil) | |
H_origin, W_origin, _ = im.shape | |
H, W = H_origin, W_origin | |
for _ in range(256): | |
current_shape_ceil = get_shape_ceil(H, W) | |
if abs(current_shape_ceil - shape_ceil) < 0.1: | |
break | |
k = shape_ceil / current_shape_ceil | |
H = int(round(float(H) * k / 64.0) * 64) | |
W = int(round(float(W) * k / 64.0) * 64) | |
if H == H_origin and W == W_origin: | |
return im | |
return resample_image(im, width=W, height=H) | |
def HWC3(x): | |
assert x.dtype == np.uint8 | |
if x.ndim == 2: | |
x = x[:, :, None] | |
assert x.ndim == 3 | |
H, W, C = x.shape | |
assert C == 1 or C == 3 or C == 4 | |
if C == 3: | |
return x | |
if C == 1: | |
return np.concatenate([x, x, x], axis=2) | |
if C == 4: | |
color = x[:, :, 0:3].astype(np.float32) | |
alpha = x[:, :, 3:4].astype(np.float32) / 255.0 | |
y = color * alpha + 255.0 * (1.0 - alpha) | |
y = y.clip(0, 255).astype(np.uint8) | |
return y | |
def remove_empty_str(items, default=None): | |
items = [x for x in items if x != ""] | |
if len(items) == 0 and default is not None: | |
return [default] | |
return items | |
def join_prompts(*args, **kwargs): | |
prompts = [str(x) for x in args if str(x) != ""] | |
if len(prompts) == 0: | |
return "" | |
if len(prompts) == 1: | |
return prompts[0] | |
return ', '.join(prompts) | |
def generate_temp_filename(folder='./outputs/', extension='png'): | |
current_time = datetime.datetime.now() | |
date_string = current_time.strftime("%Y-%m-%d") | |
time_string = current_time.strftime("%Y-%m-%d_%H-%M-%S") | |
random_number = random.randint(1000, 9999) | |
filename = f"{time_string}_{random_number}.{extension}" | |
result = os.path.join(folder, date_string, filename) | |
return date_string, os.path.abspath(os.path.realpath(result)), filename | |
def get_files_from_folder(folder_path, exensions=None, name_filter=None): | |
if not os.path.isdir(folder_path): | |
raise ValueError("Folder path is not a valid directory.") | |
filenames = [] | |
for root, dirs, files in os.walk(folder_path): | |
relative_path = os.path.relpath(root, folder_path) | |
if relative_path == ".": | |
relative_path = "" | |
for filename in files: | |
_, file_extension = os.path.splitext(filename) | |
if (exensions == None or file_extension.lower() in exensions) and (name_filter == None or name_filter in _): | |
path = os.path.join(relative_path, filename) | |
filenames.append(path) | |
return sorted(filenames, key=lambda x: -1 if os.sep in x else 1) | |