File size: 1,870 Bytes
897701e
 
 
 
 
93fe568
 
897701e
dab8972
22ae21c
dab8972
 
897701e
dab8972
 
 
897701e
 
 
 
dab8972
 
 
 
 
 
 
897701e
 
 
 
 
dab8972
 
897701e
 
 
dab8972
897701e
 
dab8972
897701e
 
 
 
 
22ae21c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from PIL import Image
from transformers import CLIPProcessor, CLIPModel
import gradio as gr

# Initialize CLIP model and processor
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")

def image_similarity(image: Image.Image, positive_prompt: str, negative_prompts: list):
    
    prompts = [positive_prompt] + negative_prompts

    inputs = processor(
        text=prompts,
        images=image,
        return_tensors="pt",
        padding=True
    )

    outputs = model(**inputs)
    logits_per_image = outputs.logits_per_image
    probs = logits_per_image.softmax(dim=1)

    # Determine if positive prompt has a higher probability than any of the negative prompts
    is_positive_highest = probs[0][0] > max(probs[0][1:])

    return bool(is_positive_highest), f"Probability for Positive Prompt: {probs[0][0]:.4f}"

interface = gr.Interface(
    fn=image_similarity, 
    inputs=[
        gr.components.Image(type="pil"), 
        gr.components.Text(label="Enter positive prompt e.g. 'a person drinking a beverage'"),
        gr.components.Textbox(label="Enter negative prompts, separated by semicolon e.g. 'an empty scene; person without beverage'", placeholder="negative prompt 1; negative prompt 2; ..."),
    ], 
    outputs=[
        gr.components.Textbox(label="Result"),
        gr.components.Textbox(label="Probability for Positive Prompt")
    ],
    title="Engagify's Image Action Detection",
    description="[Author: Ibrahim Hasani] This Method uses CLIP-VIT [Version: BASE-PATCH-16] to determine if an action is being performed in an image or not. (Binary Classifier). It contrasts an Action against multiple negative labels. Ensure the prompts accurately describe the desired detection.",
    live=False,
    theme=gr.themes.Monochrome(),

)

interface.launch()