from PIL import Image from transformers import CLIPProcessor, CLIPModel import gradio as gr import torchvision.transforms as transforms # Initialize CLIP model and processor processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") def image_similarity(image: Image.Image, positive_prompt: str, negative_prompts: str): # Convert the PIL Image to a tensor and preprocess transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) image_tensor = transform(image).unsqueeze(0) # Add batch dimension # Split the negative prompts string into a list of prompts negative_prompts_list = negative_prompts.split(";") # Combine positive and negative prompts into one list prompts = [positive_prompt.strip()] + [np.strip() for np in negative_prompts_list] # Process prompts and image tensor inputs = processor( text=prompts, images=image_tensor, return_tensors="pt", padding=True ) outputs = model(**inputs) logits_per_image = outputs.logits_per_image probs = logits_per_image.softmax(dim=1) # Determine if positive prompt has a higher probability than any of the negative prompts is_positive_highest = probs[0][0] > max(probs[0][1:]) return bool(is_positive_highest), f"Probability for Positive Prompt: {probs[0][0]:.4f}" interface = gr.Interface( fn=image_similarity, inputs=[ gr.components.Image(type="pil"), gr.components.Text(label="Enter positive prompt e.g. 'a person drinking a beverage'"), gr.components.Textbox(label="Enter negative prompts, separated by semicolon e.g. 'an empty scene; person without beverage'", placeholder="negative prompt 1; negative prompt 2; ..."), ], outputs=[ gr.components.Textbox(label="Result"), gr.components.Textbox(label="Probability for Positive Prompt") ], title="Engagify's Image Action Detection", description="[Author: Ibrahim Hasani] This Method uses CLIP-VIT [Version: BASE-PATCH-16] to determine if an action is being performed in an image or not. (Binary Classifier). It contrasts an Action against multiple negative labels. Ensure the prompts accurately describe the desired