Update app.py
Browse files
app.py
CHANGED
@@ -2,25 +2,22 @@ import gradio as gr
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
from transformers import OwlViTProcessor, OwlViTForObjectDetection
|
5 |
-
from torchvision import transforms
|
6 |
from PIL import Image, ImageDraw
|
7 |
import cv2
|
8 |
import torch.nn.functional as F
|
9 |
import tempfile
|
10 |
-
import os
|
11 |
-
from SuperGluePretrainedNetwork.models.matching import Matching
|
12 |
-
from SuperGluePretrainedNetwork.models.utils import read_image
|
13 |
import matplotlib.pyplot as plt
|
14 |
import matplotlib.cm as cm
|
15 |
from io import BytesIO
|
|
|
|
|
16 |
|
17 |
# Set device
|
18 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
19 |
|
20 |
# Load models
|
21 |
-
|
22 |
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
|
23 |
-
model = mixin.to(device)
|
24 |
|
25 |
matching = Matching({
|
26 |
'superpoint': {'nms_radius': 4, 'keypoint_threshold': 0.005, 'max_keypoints': 1024},
|
@@ -28,14 +25,6 @@ matching = Matching({
|
|
28 |
}).eval().to(device)
|
29 |
|
30 |
# Utility functions
|
31 |
-
def preprocess_image(image):
|
32 |
-
transform = transforms.Compose([
|
33 |
-
transforms.Resize((224, 224)),
|
34 |
-
transforms.ToTensor(),
|
35 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
36 |
-
])
|
37 |
-
return transform(image).unsqueeze(0)
|
38 |
-
|
39 |
def save_array_to_temp_image(arr):
|
40 |
rgb_arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB)
|
41 |
img = Image.fromarray(rgb_arr)
|
@@ -45,24 +34,7 @@ def save_array_to_temp_image(arr):
|
|
45 |
img.save(temp_file_name)
|
46 |
return temp_file_name
|
47 |
|
48 |
-
def stitch_images(images):
|
49 |
-
if not images:
|
50 |
-
return Image.new('RGB', (100, 100), color='gray')
|
51 |
-
|
52 |
-
max_width = max([img.width for img in images])
|
53 |
-
total_height = sum(img.height for img in images)
|
54 |
-
|
55 |
-
composite = Image.new('RGB', (max_width, total_height))
|
56 |
-
|
57 |
-
y_offset = 0
|
58 |
-
for img in images:
|
59 |
-
composite.paste(img, (0, y_offset))
|
60 |
-
y_offset += img.height
|
61 |
-
|
62 |
-
return composite
|
63 |
-
|
64 |
def unified_matching_plot2(image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, path=None, show_keypoints=False, fast_viz=False, opencv_display=False, opencv_title='matches', small_text=[]):
|
65 |
-
# Resize images to have the same height
|
66 |
height = min(image0.shape[0], image1.shape[0])
|
67 |
image0_resized = cv2.resize(image0, (int(image0.shape[1] * height / image0.shape[0]), height))
|
68 |
image1_resized = cv2.resize(image1, (int(image1.shape[1] * height / image1.shape[0]), height))
|
|
|
2 |
import torch
|
3 |
import numpy as np
|
4 |
from transformers import OwlViTProcessor, OwlViTForObjectDetection
|
|
|
5 |
from PIL import Image, ImageDraw
|
6 |
import cv2
|
7 |
import torch.nn.functional as F
|
8 |
import tempfile
|
|
|
|
|
|
|
9 |
import matplotlib.pyplot as plt
|
10 |
import matplotlib.cm as cm
|
11 |
from io import BytesIO
|
12 |
+
from SuperGluePretrainedNetwork.models.matching import Matching
|
13 |
+
from SuperGluePretrainedNetwork.models.utils import read_image
|
14 |
|
15 |
# Set device
|
16 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
|
18 |
# Load models
|
19 |
+
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32").to(device)
|
20 |
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
|
|
|
21 |
|
22 |
matching = Matching({
|
23 |
'superpoint': {'nms_radius': 4, 'keypoint_threshold': 0.005, 'max_keypoints': 1024},
|
|
|
25 |
}).eval().to(device)
|
26 |
|
27 |
# Utility functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def save_array_to_temp_image(arr):
|
29 |
rgb_arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB)
|
30 |
img = Image.fromarray(rgb_arr)
|
|
|
34 |
img.save(temp_file_name)
|
35 |
return temp_file_name
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
def unified_matching_plot2(image0, image1, kpts0, kpts1, mkpts0, mkpts1, color, text, path=None, show_keypoints=False, fast_viz=False, opencv_display=False, opencv_title='matches', small_text=[]):
|
|
|
38 |
height = min(image0.shape[0], image1.shape[0])
|
39 |
image0_resized = cv2.resize(image0, (int(image0.shape[1] * height / image0.shape[0]), height))
|
40 |
image1_resized = cv2.resize(image1, (int(image1.shape[1] * height / image1.shape[0]), height))
|