Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,132 +1,164 @@
|
|
1 |
-
import os
|
2 |
import pandas as pd
|
3 |
-
import
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
import
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
)
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
if __name__ == "__main__":
|
132 |
-
|
|
|
|
|
1 |
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import streamlit as st
|
4 |
+
import os
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
+
|
8 |
+
try:
|
9 |
+
import tabula
|
10 |
+
from tabula import read_pdf
|
11 |
+
except:
|
12 |
+
read_pdf = None
|
13 |
+
|
14 |
+
# ----------- File Upload Handler ----------- #
|
15 |
+
def file_upload(file):
|
16 |
+
file_ext = os.path.splitext(file.name)[1].lower()
|
17 |
+
try:
|
18 |
+
if file_ext == '.csv':
|
19 |
+
df = pd.read_csv(file)
|
20 |
+
elif file_ext in ['.xls', '.xlsx']:
|
21 |
+
df = pd.read_excel(file)
|
22 |
+
elif file_ext == '.json':
|
23 |
+
df = pd.read_json(file)
|
24 |
+
elif file_ext == '.pdf' and read_pdf:
|
25 |
+
df = read_pdf(file, pages='all', multiple_tables=False)[0]
|
26 |
+
else:
|
27 |
+
st.error("β Unsupported file type or missing dependencies for PDF.")
|
28 |
+
return None
|
29 |
+
return df
|
30 |
+
except Exception as e:
|
31 |
+
st.error(f"β οΈ Error loading file: {e}")
|
32 |
+
return None
|
33 |
+
|
34 |
+
# ----------- Cleaning Functions ----------- #
|
35 |
+
def remove_empty_rows(df):
|
36 |
+
st.info("π Null values before cleaning:")
|
37 |
+
st.write(df.isnull().sum())
|
38 |
+
df_cleaned = df.dropna()
|
39 |
+
st.success("β
Null values removed.")
|
40 |
+
return df_cleaned
|
41 |
+
|
42 |
+
def replace_nulls(df, value):
|
43 |
+
st.info("π Null values before replacement:")
|
44 |
+
st.write(df.isnull().sum())
|
45 |
+
df_filled = df.fillna(value)
|
46 |
+
st.success("β
Null values replaced.")
|
47 |
+
return df_filled
|
48 |
+
|
49 |
+
def remove_noise(df):
|
50 |
+
noise_words = {'the', 'is', 'an', 'a', 'in', 'of', 'to'}
|
51 |
+
def clean_text(val):
|
52 |
+
if isinstance(val, str):
|
53 |
+
return ' '.join(word for word in val.split() if word.lower() not in noise_words)
|
54 |
+
return val
|
55 |
+
df_cleaned = df.applymap(clean_text)
|
56 |
+
st.success("β
Noise words removed.")
|
57 |
+
return df_cleaned
|
58 |
+
|
59 |
+
def remove_duplicates(df):
|
60 |
+
df_deduped = df.drop_duplicates()
|
61 |
+
st.success("β
Duplicate rows removed.")
|
62 |
+
return df_deduped
|
63 |
+
|
64 |
+
def convert_column_dtype(df, column, dtype):
|
65 |
+
try:
|
66 |
+
df[column] = df[column].astype(dtype)
|
67 |
+
st.success(f"β
Converted '{column}' to {dtype}")
|
68 |
+
except Exception as e:
|
69 |
+
st.error(f"β οΈ Conversion error: {e}")
|
70 |
+
return df
|
71 |
+
|
72 |
+
def detect_outliers(df, column):
|
73 |
+
if column in df.select_dtypes(include=['float', 'int']).columns:
|
74 |
+
Q1 = df[column].quantile(0.25)
|
75 |
+
Q3 = df[column].quantile(0.75)
|
76 |
+
IQR = Q3 - Q1
|
77 |
+
lower = Q1 - 1.5 * IQR
|
78 |
+
upper = Q3 + 1.5 * IQR
|
79 |
+
outliers = df[(df[column] < lower) | (df[column] > upper)]
|
80 |
+
st.write(f"π Found {len(outliers)} outliers in column '{column}'")
|
81 |
+
return outliers
|
82 |
+
else:
|
83 |
+
st.warning("β οΈ Column must be numeric to detect outliers.")
|
84 |
+
return pd.DataFrame()
|
85 |
+
|
86 |
+
def plot_distributions(df):
|
87 |
+
st.subheader("π Data Distributions")
|
88 |
+
numeric_cols = df.select_dtypes(include=['float', 'int']).columns
|
89 |
+
for col in numeric_cols:
|
90 |
+
fig, ax = plt.subplots()
|
91 |
+
sns.histplot(df[col].dropna(), kde=True, ax=ax)
|
92 |
+
ax.set_title(f"Distribution of {col}")
|
93 |
+
st.pyplot(fig)
|
94 |
+
|
95 |
+
def plot_missing_data(df):
|
96 |
+
st.subheader("π Missing Data Heatmap")
|
97 |
+
fig, ax = plt.subplots()
|
98 |
+
sns.heatmap(df.isnull(), cbar=False, cmap='viridis')
|
99 |
+
st.pyplot(fig)
|
100 |
+
|
101 |
+
def main():
|
102 |
+
st.set_page_config(page_title="π§Ή Smart Dataset Cleaner", layout="wide")
|
103 |
+
st.title("π§Ή Smart Dataset Cleaner")
|
104 |
+
st.caption("β¨ Clean, analyze, and preprocess your dataset with ease")
|
105 |
+
|
106 |
+
uploaded_file = st.file_uploader("π Upload your dataset", type=["csv", "xlsx", "xls", "json", "pdf"])
|
107 |
+
if uploaded_file:
|
108 |
+
df = file_upload(uploaded_file)
|
109 |
+
if df is not None:
|
110 |
+
st.subheader("π Original Dataset Preview")
|
111 |
+
st.dataframe(df.head())
|
112 |
+
|
113 |
+
st.markdown("## π§° Data Cleaning Tools")
|
114 |
+
with st.expander("β Replace Null Values"):
|
115 |
+
fill_value = st.text_input("Enter value to replace nulls with:")
|
116 |
+
if st.button("Replace Nulls"):
|
117 |
+
df = replace_nulls(df, fill_value)
|
118 |
+
st.dataframe(df)
|
119 |
+
|
120 |
+
if st.button("π§Ό Remove Empty Rows"):
|
121 |
+
df = remove_empty_rows(df)
|
122 |
+
st.dataframe(df)
|
123 |
+
|
124 |
+
if st.button("π§Ή Remove Duplicate Rows"):
|
125 |
+
df = remove_duplicates(df)
|
126 |
+
st.dataframe(df)
|
127 |
+
|
128 |
+
if st.button("π Remove Noise Words from Text"):
|
129 |
+
df = remove_noise(df)
|
130 |
+
st.dataframe(df)
|
131 |
+
|
132 |
+
with st.expander("π Convert Column DataType"):
|
133 |
+
selected_col = st.selectbox("Select column", df.columns)
|
134 |
+
dtype = st.selectbox("Select target type", ["int", "float", "str", "bool"])
|
135 |
+
if st.button("Convert"):
|
136 |
+
df = convert_column_dtype(df, selected_col, dtype)
|
137 |
+
st.dataframe(df)
|
138 |
+
|
139 |
+
st.markdown("## π Data Visualizations")
|
140 |
+
if st.checkbox("π Show Summary Stats"):
|
141 |
+
st.write(df.describe(include='all'))
|
142 |
+
|
143 |
+
if st.checkbox("π Plot Column Distributions"):
|
144 |
+
plot_distributions(df)
|
145 |
+
|
146 |
+
if st.checkbox("π Show Missing Data Heatmap"):
|
147 |
+
plot_missing_data(df)
|
148 |
+
|
149 |
+
st.markdown("## π¨ Outlier Detection")
|
150 |
+
outlier_col = st.selectbox("Select numeric column", df.select_dtypes(include=['float', 'int']).columns)
|
151 |
+
if st.button("Detect Outliers"):
|
152 |
+
outliers = detect_outliers(df, outlier_col)
|
153 |
+
if not outliers.empty:
|
154 |
+
st.write(outliers)
|
155 |
+
|
156 |
+
st.markdown("## πΎ Download Cleaned Dataset")
|
157 |
+
file_name = st.text_input("Filename:", "cleaned_dataset.csv")
|
158 |
+
if st.button("Download CSV"):
|
159 |
+
st.download_button("π Download", df.to_csv(index=False), file_name, mime="text/csv")
|
160 |
+
else:
|
161 |
+
st.warning("β οΈ Please upload a supported file to begin.")
|
162 |
+
|
163 |
if __name__ == "__main__":
|
164 |
+
main()
|