Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,25 +5,38 @@ import pickle
|
|
5 |
from groq import Groq
|
6 |
from datasets import load_dataset
|
7 |
from transformers import AutoTokenizer, pipeline
|
|
|
8 |
|
9 |
# Initialize Groq API
|
10 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
11 |
|
12 |
-
#
|
13 |
-
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
healthcare_ds = load_dataset("harishnair04/mtsamples")
|
15 |
education_ds = load_dataset("ehovy/race", "all")
|
16 |
finance_ds = load_dataset("warwickai/financial_phrasebank_mirror")
|
17 |
except Exception as e:
|
18 |
st.error(f"Error loading datasets: {e}")
|
19 |
-
st.stop() # Stop execution if datasets fail to load
|
20 |
-
|
21 |
-
# Load chat model and tokenizer (with error handling and cache)
|
22 |
-
try:
|
23 |
-
tokenizer = AutoTokenizer.from_pretrained("rajkumarrrk/dialogpt-fine-tuned-on-daily-dialog", cache_dir="./.cache")
|
24 |
-
chat_pipe = pipeline("text-generation", model="rajkumarrrk/dialogpt-fine-tuned-on-daily-dialog", tokenizer=tokenizer, cache_dir="./.cache")
|
25 |
-
except Exception as e:
|
26 |
-
st.error(f"Error loading chat model: {e}")
|
27 |
st.stop()
|
28 |
|
29 |
# FAISS Index Setup (Simplified)
|
@@ -40,28 +53,32 @@ st.title("🤖 AI Chatbot (Healthcare, Education & Finance)")
|
|
40 |
user_input = st.text_input("💬 Ask me anything:", placeholder="Type your query here...")
|
41 |
if st.button("Send"):
|
42 |
if user_input:
|
43 |
-
#
|
44 |
-
dataset =
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
|
|
48 |
if dataset is None:
|
49 |
-
st.warning("No relevant dataset found for your query.")
|
50 |
st.stop()
|
51 |
|
52 |
-
# RAG: Retrieve (Simplified)
|
53 |
-
retrieved_data = dataset['train'][0] if dataset and len(dataset['train']) > 0 else "No relevant data retrieved."
|
54 |
|
55 |
try:
|
56 |
# Generate response (Groq)
|
57 |
chat_completion = client.chat.completions.create(
|
58 |
messages=[{"role": "user", "content": f"{user_input} {retrieved_data}"}],
|
59 |
-
model="llama-3.3-70b-versatile"
|
60 |
)
|
61 |
response = chat_completion.choices[0].message.content
|
62 |
except Exception as e:
|
63 |
st.error(f"Error generating response: {e}")
|
64 |
-
response = "Error generating response."
|
65 |
|
66 |
# Save and display
|
67 |
chat_history.append(f"User: {user_input}\nBot: {response}")
|
@@ -87,7 +104,6 @@ def load_chat_history():
|
|
87 |
except Exception as e:
|
88 |
st.sidebar.warning(f"Error loading chat history (may be corrupted): {e}")
|
89 |
|
90 |
-
|
91 |
-
load_chat_history() # Load on startup
|
92 |
if st.sidebar.button("Save Chat History"):
|
93 |
save_chat_history()
|
|
|
5 |
from groq import Groq
|
6 |
from datasets import load_dataset
|
7 |
from transformers import AutoTokenizer, pipeline
|
8 |
+
import subprocess # For downloading if needed
|
9 |
|
10 |
# Initialize Groq API
|
11 |
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
12 |
|
13 |
+
# Download model (if necessary - try requirements.txt first)
|
14 |
+
try:
|
15 |
+
# Try loading directly (after requirements.txt)
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained("rajkumarrrk/dialogpt-fine-tuned-on-daily-dialog", cache_dir="./.cache")
|
17 |
+
chat_pipe = pipeline("text-generation", model="rajkumarrrk/dialogpt-fine-tuned-on-daily-dialog", tokenizer=tokenizer, cache_dir="./.cache")
|
18 |
+
print("Model loaded successfully (direct load).") # Check in logs
|
19 |
+
except Exception as e:
|
20 |
+
try:
|
21 |
+
# Fallback: Download using subprocess (less preferred)
|
22 |
+
print("Trying to download model...") # Check in logs
|
23 |
+
subprocess.run(["transformers-cli", "download", "rajkumarrrk/dialogpt-fine-tuned-on-daily-dialog"], check=True) # Updated download command
|
24 |
+
tokenizer = AutoTokenizer.from_pretrained("rajkumarrrk/dialogpt-fine-tuned-on-daily-dialog", cache_dir="./.cache")
|
25 |
+
chat_pipe = pipeline("text-generation", model="rajkumarrrk/dialogpt-fine-tuned-on-daily-dialog", tokenizer=tokenizer, cache_dir="./.cache")
|
26 |
+
print("Model downloaded and loaded successfully (subprocess).") # Check in logs
|
27 |
+
except Exception as download_e:
|
28 |
+
st.error(f"Error loading/downloading chat model: {e}. Download error: {download_e}")
|
29 |
+
st.stop()
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
# Load datasets (with error handling)
|
34 |
+
try:
|
35 |
healthcare_ds = load_dataset("harishnair04/mtsamples")
|
36 |
education_ds = load_dataset("ehovy/race", "all")
|
37 |
finance_ds = load_dataset("warwickai/financial_phrasebank_mirror")
|
38 |
except Exception as e:
|
39 |
st.error(f"Error loading datasets: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
st.stop()
|
41 |
|
42 |
# FAISS Index Setup (Simplified)
|
|
|
53 |
user_input = st.text_input("💬 Ask me anything:", placeholder="Type your query here...")
|
54 |
if st.button("Send"):
|
55 |
if user_input:
|
56 |
+
# Dataset Selection (Improved)
|
57 |
+
dataset = None
|
58 |
+
if "health" in user_input.lower():
|
59 |
+
dataset = healthcare_ds
|
60 |
+
elif "education" in user_input.lower():
|
61 |
+
dataset = education_ds
|
62 |
+
elif "finance" in user_input.lower():
|
63 |
+
dataset = finance_ds
|
64 |
+
|
65 |
if dataset is None:
|
66 |
+
st.warning("No relevant dataset found for your query. Please use keywords like 'health', 'education', or 'finance'.")
|
67 |
st.stop()
|
68 |
|
69 |
+
# RAG: Retrieve (Simplified and safer)
|
70 |
+
retrieved_data = dataset['train'][0]['text'] if dataset and len(dataset['train']) > 0 and 'text' in dataset['train'][0] else "No relevant data retrieved."
|
71 |
|
72 |
try:
|
73 |
# Generate response (Groq)
|
74 |
chat_completion = client.chat.completions.create(
|
75 |
messages=[{"role": "user", "content": f"{user_input} {retrieved_data}"}],
|
76 |
+
model="llama-3.3-70b-versatile"
|
77 |
)
|
78 |
response = chat_completion.choices[0].message.content
|
79 |
except Exception as e:
|
80 |
st.error(f"Error generating response: {e}")
|
81 |
+
response = "Error generating response."
|
82 |
|
83 |
# Save and display
|
84 |
chat_history.append(f"User: {user_input}\nBot: {response}")
|
|
|
104 |
except Exception as e:
|
105 |
st.sidebar.warning(f"Error loading chat history (may be corrupted): {e}")
|
106 |
|
107 |
+
load_chat_history()
|
|
|
108 |
if st.sidebar.button("Save Chat History"):
|
109 |
save_chat_history()
|