Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import faiss
|
4 |
+
import pickle
|
5 |
+
from groq import Groq
|
6 |
+
from datasets import load_dataset
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# Initialize Groq API
|
10 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
11 |
+
|
12 |
+
# Load datasets
|
13 |
+
healthcare_ds = load_dataset("harishnair04/mtsamples")
|
14 |
+
education_ds = load_dataset("ehovy/race", "all")
|
15 |
+
finance_ds = load_dataset("warwickai/financial_phrasebank_mirror")
|
16 |
+
|
17 |
+
# Load chat model
|
18 |
+
chat_pipe = pipeline("text-generation", model="rajkumarrrk/dialogpt-fine-tuned-on-daily-dialog")
|
19 |
+
|
20 |
+
# FAISS Index Setup
|
21 |
+
index = faiss.IndexFlatL2(768)
|
22 |
+
chat_history = []
|
23 |
+
|
24 |
+
# Streamlit UI Setup
|
25 |
+
st.set_page_config(page_title="AI Chatbot", layout="wide")
|
26 |
+
st.title("π€ AI Chatbot (Healthcare, Education & Finance)")
|
27 |
+
|
28 |
+
# Sidebar for chat history
|
29 |
+
st.sidebar.title("π Chat History")
|
30 |
+
if st.sidebar.button("Download Chat History"):
|
31 |
+
with open("chat_history.txt", "w") as file:
|
32 |
+
file.write("\n".join(chat_history))
|
33 |
+
st.sidebar.success("Chat history saved!")
|
34 |
+
|
35 |
+
# Chat Interface
|
36 |
+
user_input = st.text_input("π¬ Ask me anything:", placeholder="Type your query here...")
|
37 |
+
if st.button("Send"):
|
38 |
+
if user_input:
|
39 |
+
# Determine dataset based on user query (Basic CAG Implementation)
|
40 |
+
dataset = healthcare_ds if "health" in user_input.lower() else \
|
41 |
+
education_ds if "education" in user_input.lower() else \
|
42 |
+
finance_ds
|
43 |
+
|
44 |
+
# RAG: Retrieve relevant data
|
45 |
+
retrieved_data = dataset['train'][0] # Simplified retrieval
|
46 |
+
|
47 |
+
# Generate response using Llama via Groq API
|
48 |
+
chat_completion = client.chat.completions.create(
|
49 |
+
messages=[{"role": "user", "content": f"{user_input} {retrieved_data}"}],
|
50 |
+
model="llama-3.3-70b-versatile"
|
51 |
+
)
|
52 |
+
response = chat_completion.choices[0].message.content
|
53 |
+
|
54 |
+
# Save chat to FAISS and display
|
55 |
+
chat_history.append(f"User: {user_input}\nBot: {response}")
|
56 |
+
st.text_area("π€ AI Response:", value=response, height=200)
|
57 |
+
|
58 |
+
# Display past chats
|
59 |
+
st.sidebar.write("\n".join(chat_history))
|
60 |
+
|
61 |
+
# Save chat history using pickle for persistence
|
62 |
+
def save_chat_history():
|
63 |
+
with open("chat_history.pkl", "wb") as file:
|
64 |
+
pickle.dump(chat_history, file)
|
65 |
+
|
66 |
+
def load_chat_history():
|
67 |
+
global chat_history
|
68 |
+
if os.path.exists("chat_history.pkl"):
|
69 |
+
with open("chat_history.pkl", "rb") as file:
|
70 |
+
chat_history = pickle.load(file)
|
71 |
+
|
72 |
+
load_chat_history()
|
73 |
+
if st.sidebar.button("Save Chat History"):
|
74 |
+
save_chat_history()
|
75 |
+
st.sidebar.success("Chat history saved permanently!")
|