Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
pipe=pipeline(model="vennify/t5-base-grammar-correction") | |
st.title("Grammatical Error Checker") | |
st.header("Text Input:") | |
text=st.text_area('Input sentence:', key=1) | |
if text: | |
out=pipe(text) | |
st.text_area(label="Output sentence:", value=out) | |
from audio_recorder_streamlit import audio_recorder | |
pipe_s=pipeline(model="openai/whisper-large-v3") | |
st.header("Speech Input:") | |
audio_bytes = audio_recorder(pause_threshold=2.0, sample_rate=41_000, recording_color="#e8b62c", neutral_color="#6aa36f", icon_name="user", icon_size="6x") | |
if audio_bytes: | |
st.audio(audio_bytes, format="audio/wav") | |
out_s=pipe_s(audio_bytes) | |
st.text_area(label="Input sentence:", value=out_s) | |
out_s=str(out_s) | |
out_S=pipe(out_s) | |
st.text_area(label="Output sentence:", value=out_S) | |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast | |
st.title("Language Translator") | |
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") | |
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") | |
tokenizer.src_lang = "en_XX" | |
text_l=st.text_area('Input sentence:', key=2) | |
if text_l: | |
encoded_en = tokenizer(text_l, return_tensors="pt") | |
generated_tokens = model.generate(**encoded_en,forced_bos_token_id=tokenizer.lang_code_to_id["hi_IN"]) | |
out_l=tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
st.text_area(label="Output sentence:", value=out_l) | |
pipe_p=pipeline(model="ramsrigouthamg/t5_sentence_paraphraser") | |
st.title("Paraphraser") | |
text_p=st.text_area('Input sentence:', key=3) | |
if text_p: | |
out_p=pipe_p(text_p) | |
st.text_area(label="Output sentence:", value=out_p) |