HashamUllah commited on
Commit
6425b49
·
verified ·
1 Parent(s): d75cc9b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +83 -56
app.py CHANGED
@@ -1,56 +1,83 @@
1
- import gradio as gr
2
- import numpy as np
3
- import cv2
4
- import pickle
5
- from tensorflow.keras.models import load_model
6
- from tensorflow.keras.preprocessing.image import img_to_array
7
-
8
- # Load the model and the label binarizer
9
- model = load_model('cnn_model.h5')
10
- label_binarizer = pickle.load(open('label_transform.pkl', 'rb'))
11
-
12
- # Function to convert images to array
13
- def convert_image_to_array(image):
14
- try:
15
- image = cv2.imdecode(np.frombuffer(image, np.uint8), cv2.IMREAD_COLOR)
16
- if image is not None:
17
- image = cv2.resize(image, (256, 256))
18
- return img_to_array(image)
19
- else:
20
- return np.array([])
21
- except Exception as e:
22
- print(f"Error: {e}")
23
- return None
24
-
25
- def predict_image(image):
26
- try:
27
- image_array = convert_image_to_array(image)
28
-
29
- if image_array.size == 0:
30
- return "Invalid image"
31
-
32
- # Normalize the image
33
- image_array = np.array(image_array, dtype=np.float16) / 255.0
34
-
35
- # Ensure the image_array has the correct shape (1, 256, 256, 3)
36
- image_array = np.expand_dims(image_array, axis=0)
37
-
38
- # Make a prediction
39
- prediction = model.predict(image_array)
40
- predicted_class = label_binarizer.inverse_transform(prediction)[0]
41
-
42
- return predicted_class
43
- except Exception as e:
44
- return str(e)
45
-
46
- # Define Gradio interface
47
- interface = gr.Interface(
48
- fn=predict_image,
49
- inputs=gr.Image(type="numpy"),
50
- outputs="text",
51
- title="Image Classification",
52
- description="Upload an image to get the predicted class."
53
- )
54
-
55
- if __name__ == "__main__":
56
- interface.launch(share=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, UploadFile, File
2
+ from fastapi.responses import JSONResponse
3
+ import numpy as np
4
+ import cv2
5
+ import pickle
6
+ from tensorflow.keras.models import load_model
7
+ from tensorflow.keras.preprocessing.image import img_to_array
8
+
9
+ app = FastAPI()
10
+
11
+ print("app run")
12
+ # Load the model and the label binarizer
13
+ model = load_model('cnn_model.h5')
14
+ print("model loaded")
15
+ label_binarizer = pickle.load(open('label_transform.pkl', 'rb'))
16
+ print("labels loaded")
17
+
18
+ # Function to convert images to array
19
+ def convert_image_to_array(image_dir):
20
+ try:
21
+ image = cv2.imdecode(np.frombuffer(image_dir, np.uint8), cv2.IMREAD_COLOR)
22
+ if image is not None:
23
+ image = cv2.resize(image, (256, 256))
24
+ return img_to_array(image)
25
+ else:
26
+ return np.array([])
27
+ except Exception as e:
28
+ print(f"Error : {e}")
29
+ return None
30
+
31
+ @app.post("/predict")
32
+ async def predict(file: UploadFile = File(...)):
33
+ try:
34
+ # Read the file and convert it to an array
35
+ image_data = await file.read()
36
+ image_array = convert_image_to_array(image_data)
37
+
38
+ if image_array.size == 0:
39
+ return JSONResponse(content={"error": "Invalid image"}, status_code=400)
40
+
41
+ # Normalize the image
42
+ image_array = np.array(image_array, dtype=np.float16) / 255.0
43
+
44
+ # Ensure the image_array has the correct shape (1, 256, 256, 3)
45
+ image_array = np.expand_dims(image_array, axis=0)
46
+
47
+ # Make a prediction
48
+ prediction = model.predict(image_array)
49
+ predicted_class = label_binarizer.inverse_transform(prediction)[0]
50
+
51
+ return {"prediction": predicted_class}
52
+ except Exception as e:
53
+ return JSONResponse(content={"error": str(e)}, status_code=500)
54
+
55
+ # Add a test GET endpoint to manually trigger the prediction
56
+ @app.get("/test-predict")
57
+ def test_predict():
58
+ try:
59
+ image_path = 'crop_image1.jpg'
60
+ image = cv2.imread(image_path)
61
+ image_array = cv2.resize(image, (256, 256))
62
+ image_array = img_to_array(image_array)
63
+
64
+ if image_array.size == 0:
65
+ return JSONResponse(content={"error": "Invalid image"}, status_code=400)
66
+
67
+ # Normalize the image
68
+ image_array = np.array(image_array, dtype=np.float16) / 255.0
69
+
70
+ # Ensure the image_array has the correct shape (1, 256, 256, 3)
71
+ image_array = np.expand_dims(image_array, axis=0)
72
+
73
+ # Make a prediction
74
+ prediction = model.predict(image_array)
75
+ predicted_class = label_binarizer.inverse_transform(prediction)[0]
76
+
77
+ return {"prediction": predicted_class}
78
+ except Exception as e:
79
+ return JSONResponse(content={"error": str(e)}, status_code=500)
80
+
81
+ if __name__ == "__main__":
82
+ import uvicorn
83
+ uvicorn.run(app, host="127.0.0.1", port=8000)