Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,29 +10,23 @@ model = load_model('cnn_model.h5')
|
|
10 |
label_binarizer = pickle.load(open('label_transform.pkl', 'rb'))
|
11 |
|
12 |
# Function to convert images to array
|
13 |
-
def convert_image_to_array(
|
14 |
try:
|
15 |
-
|
16 |
-
print(f"Image type: {type(image)}")
|
17 |
-
print(f"Image size: {len(image)} bytes")
|
18 |
-
|
19 |
-
image = cv2.imdecode(np.frombuffer(image, np.uint8), cv2.IMREAD_COLOR)
|
20 |
-
|
21 |
if image is not None:
|
22 |
-
|
23 |
-
image = cv2.resize(image, (256, 256))
|
24 |
-
print(f"Resized image shape: {image.shape}")
|
25 |
return img_to_array(image)
|
26 |
else:
|
27 |
-
print("Image decoding returned None")
|
28 |
return np.array([])
|
29 |
except Exception as e:
|
30 |
-
print(f"Error: {e}")
|
31 |
return None
|
32 |
|
33 |
-
def
|
34 |
try:
|
35 |
-
|
|
|
|
|
36 |
|
37 |
if image_array.size == 0:
|
38 |
return "Invalid image"
|
@@ -51,14 +45,15 @@ def predict_image(image):
|
|
51 |
except Exception as e:
|
52 |
return str(e)
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
fn=
|
57 |
-
inputs=gr.Image(type="numpy"),
|
58 |
outputs="text",
|
59 |
title="Image Classification",
|
60 |
-
description="Upload an image to
|
61 |
)
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
10 |
label_binarizer = pickle.load(open('label_transform.pkl', 'rb'))
|
11 |
|
12 |
# Function to convert images to array
|
13 |
+
def convert_image_to_array(image_dir):
|
14 |
try:
|
15 |
+
image = cv2.imdecode(np.frombuffer(image_dir, np.uint8), cv2.IMREAD_COLOR)
|
|
|
|
|
|
|
|
|
|
|
16 |
if image is not None:
|
17 |
+
image = cv2.resize(image, (256, 256))
|
|
|
|
|
18 |
return img_to_array(image)
|
19 |
else:
|
|
|
20 |
return np.array([])
|
21 |
except Exception as e:
|
22 |
+
print(f"Error : {e}")
|
23 |
return None
|
24 |
|
25 |
+
def predict(image):
|
26 |
try:
|
27 |
+
# Convert the image to an array
|
28 |
+
_, image_data = cv2.imencode('.jpg', image)
|
29 |
+
image_array = convert_image_to_array(image_data.tobytes())
|
30 |
|
31 |
if image_array.size == 0:
|
32 |
return "Invalid image"
|
|
|
45 |
except Exception as e:
|
46 |
return str(e)
|
47 |
|
48 |
+
# Create a Gradio interface
|
49 |
+
iface = gr.Interface(
|
50 |
+
fn=predict,
|
51 |
+
inputs=gr.inputs.Image(type="numpy", label="Upload an image"),
|
52 |
outputs="text",
|
53 |
title="Image Classification",
|
54 |
+
description="Upload an image to classify it."
|
55 |
)
|
56 |
|
57 |
+
# Launch the interface
|
58 |
if __name__ == "__main__":
|
59 |
+
iface.launch()
|