Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import DetrImageProcessor, DetrForObjectDetection, pipeline | |
import torch | |
from PIL import Image | |
# Load the DETR model for object detection | |
processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm") | |
# Load an NLP model for summarization (T5-small used as an example) | |
summarizer = pipeline("summarization", model="t5-small") | |
st.title("Hassan's Project") | |
st.title("Object Detection with a Summary") | |
st.write("Upload an image to detect objects and get a summary of what is detected.") | |
# File uploader in Streamlit | |
uploaded_file = st.file_uploader("Choose an image...", type="jpg") | |
if uploaded_file is not None: | |
# Load and display the image | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image', use_column_width=True) | |
# Process the image and perform object detection | |
inputs = processor(images=image, return_tensors="pt") | |
outputs = detr_model(**inputs) | |
# Post-process the results to get bounding boxes and labels with a lower confidence threshold | |
target_sizes = torch.tensor([image.size[::-1]]) | |
results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.5)[0] | |
# Generate descriptions for detected objects | |
descriptions = [] | |
st.write("Detected objects:") | |
for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): | |
box = [round(i, 2) for i in box.tolist()] | |
label_text = detr_model.config.id2label[label.item()] | |
description = f"Detected {label_text} with confidence {round(score.item(), 2)} at location {box}." | |
descriptions.append(description) | |
st.write(description) # Display each detected object | |
# Combine descriptions into a single text input for the summarizer | |
description_text = " ".join(descriptions) | |
# Generate a summary using the NLP model | |
summary = summarizer(description_text, max_length=50, min_length=10, do_sample=False)[0]['summary_text'] | |
# Display the summary | |
st.subheader("Summary") | |
st.write(summary) |