HassanDataSci commited on
Commit
e2df8c4
·
verified ·
1 Parent(s): 96959fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +24 -16
app.py CHANGED
@@ -1,26 +1,34 @@
 
1
  from transformers import DetrImageProcessor, DetrForObjectDetection
2
  import torch
3
  from PIL import Image
4
  import requests
5
 
6
- url = "http://images.cocodataset.org/val2017/000000039769.jpg"
7
- image = Image.open(requests.get(url, stream=True).raw)
8
-
9
- # you can specify the revision tag if you don't want the timm dependency
10
  processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
11
  model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
12
 
13
- inputs = processor(images=image, return_tensors="pt")
14
- outputs = model(**inputs)
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- # convert outputs (bounding boxes and class logits) to COCO API
17
- # let's only keep detections with score > 0.9
18
- target_sizes = torch.tensor([image.size[::-1]])
19
- results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
20
 
21
- for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
22
- box = [round(i, 2) for i in box.tolist()]
23
- print(
24
- f"Detected {model.config.id2label[label.item()]} with confidence "
25
- f"{round(score.item(), 3)} at location {box}"
26
- )
 
1
+ import streamlit as st
2
  from transformers import DetrImageProcessor, DetrForObjectDetection
3
  import torch
4
  from PIL import Image
5
  import requests
6
 
7
+ # Load the DETR model and processor
 
 
 
8
  processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
9
  model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50", revision="no_timm")
10
 
11
+ st.title("DETR Object Detection with ResNet-50")
12
+ st.write("Upload an image and let the DETR model detect objects in it.")
13
+
14
+ # File uploader in Streamlit
15
+ uploaded_file = st.file_uploader("Choose an image...", type="jpg")
16
+
17
+ if uploaded_file is not None:
18
+ # Load and display the image
19
+ image = Image.open(uploaded_file)
20
+ st.image(image, caption='Uploaded Image', use_column_width=True)
21
+
22
+ # Process the image and perform object detection
23
+ inputs = processor(images=image, return_tensors="pt")
24
+ outputs = model(**inputs)
25
 
26
+ # Post-process the results to get bounding boxes and labels with confidence > 0.9
27
+ target_sizes = torch.tensor([image.size[::-1]])
28
+ results = processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
 
29
 
30
+ # Display results
31
+ st.write("Detected objects:")
32
+ for score, label, box in zip(results["scores"], results["labels"], results["boxes"]):
33
+ box = [round(i, 2) for i in box.tolist()]
34
+ st.write(f"{model.config.id2label[label.item()]}: {round(score.item(), 3)} at location {box}")