File size: 3,137 Bytes
04f475a
e73380c
04f475a
29afa83
7b63336
f6d41de
7b63336
29afa83
e4d47cc
29afa83
 
 
 
f825898
04f475a
f825898
800f4d4
 
 
04f475a
 
f825898
 
29afa83
 
800f4d4
29afa83
3500d25
800f4d4
29afa83
 
 
 
 
 
 
4bfa63a
29afa83
 
 
 
 
 
 
f83534a
 
29afa83
f83534a
 
 
 
85a22e3
f83534a
 
 
 
29afa83
f83534a
 
 
 
 
 
 
85a22e3
f83534a
 
 
 
 
 
 
 
 
 
 
 
29afa83
f83534a
 
 
 
f6d41de
 
4458d42
f6d41de
 
4bbf585
 
f6d41de
f83534a
85a22e3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import streamlit as st
from transformers import pipeline
from PIL import Image
from huggingface_hub import InferenceClient
import os
from gradio_client import Client

# Hugging Face API key
API_KEY = st.secrets["HF_API_KEY"]

# Initialize the Hugging Face Inference Client
client = InferenceClient(api_key=API_KEY)

# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
    """
    Load the image classification pipeline using a pretrained model.
    """
    return pipeline("image-classification", model="Shresthadev403/food-image-classification")

pipe_classification = load_image_classification_pipeline()

# Function to generate ingredients using Hugging Face Inference Client
def get_ingredients_qwen(food_name):
    """
    Generate a list of ingredients for the given food item using Qwen NLP model.
    Returns a clean, comma-separated list of ingredients.
    """
    messages = [
        {
            "role": "user",
            "content": f"List only the main ingredients for {food_name}. "
                       f"Respond in a concise, comma-separated list without any extra text or explanations."
        }
    ]
    try:
        completion = client.chat.completions.create(
            model="Qwen/Qwen2.5-Coder-32B-Instruct",
            messages=messages,
            max_tokens=50
        )
        generated_text = completion.choices[0].message["content"].strip()
        return generated_text
    except Exception as e:
        return f"Error generating ingredients: {e}"

# Streamlit app setup
st.title("Food Image Recognition with Ingredients")

# Add banner image
st.image("IR_IMAGE.png", caption="Food Recognition Model", use_container_width=True)

# Sidebar for model information
st.sidebar.title("Model Information")
st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification")
st.sidebar.write("**LLM for Ingredients**: Qwen/Qwen2.5-Coder-32B-Instruct")

# Upload image
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])

if uploaded_file is not None:
    # Display the uploaded image
    image = Image.open(uploaded_file)
    st.image(image, caption="Uploaded Image", use_container_width=True)
    st.write("Classifying...")

    # Make predictions
    predictions = pipe_classification(image)

    # Display only the top prediction
    top_food = predictions[0]['label']
    st.header(f"Food: {top_food}")

    # Generate and display ingredients for the top prediction
    st.subheader("Ingredients")
    try:
        ingredients = get_ingredients_qwen(top_food)
        st.write(ingredients)
    except Exception as e:
        st.error(f"Error generating ingredients: {e}")

    st.subheader("Healthier alternatives:")
    try:
        client = Client("https://8a56cb969da1f9d721.gradio.live/")
        result = client.predict(query=f"What's a healthy {top_food} recipe, and why is it healthy?", api_name="/get_response")
        st.write(result)
    except Exception as e:
        st.error(f"Unable to contact RAG: {e}")

# Footer
st.sidebar.markdown("Developed by Muhammad Hassan Butt.")