CTP_Project / app.py
HassanDataSci's picture
Update app.py
3500d25 verified
raw
history blame
2.92 kB
import streamlit as st
from transformers import pipeline
from PIL import Image
import os
# Load the image classification pipeline
@st.cache_resource
def load_image_classification_pipeline():
"""
Load the image classification pipeline using a pretrained model.
"""
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
pipe_classification = load_image_classification_pipeline()
# Load the GPT-Neo model for ingredient generation
@st.cache_resource
def load_llama_pipeline():
"""
Load the GPT-Neo model for ingredient generation.
"""
return pipeline("text-generation", model="EleutherAI/gpt-neo-1.3B")
pipe_llama = load_llama_pipeline()
# Function to generate ingredients using GPT-Neo
def get_ingredients_llama(food_name):
"""
Generate a list of ingredients for the given food item using GPT-Neo.
Returns a clean, comma-separated list of ingredients.
"""
prompt = (
f"List the main ingredients typically used to prepare {food_name}. "
"Provide the ingredients as a concise, comma-separated list without any explanations."
)
try:
response = pipe_llama(prompt, max_length=50, num_return_sequences=1)
generated_text = response[0]["generated_text"].strip()
# Process the response to ensure it's a clean, comma-separated list
ingredients = generated_text.split(":")[-1].strip() # Handle cases like "Ingredients: ..."
ingredients = ingredients.replace(".", "").strip() # Remove periods and extra spaces
return ingredients
except Exception as e:
return f"Error generating ingredients: {e}"
# Streamlit app setup
st.title("Food Image Recognition with Ingredients")
# Add banner image
st.image("IR_IMAGE.png", caption="Food Recognition Model", use_column_width=True)
# Sidebar for model information
st.sidebar.title("Model Information")
st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification")
st.sidebar.write("**LLM for Ingredients**: EleutherAI/gpt-neo-1.3B")
# Upload image
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
if uploaded_file is not None:
# Display the uploaded image
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("Classifying...")
# Make predictions
predictions = pipe_classification(image)
# Display only the top prediction
top_food = predictions[0]['label']
st.header(f"Food: {top_food}")
# Generate and display ingredients for the top prediction
st.subheader("Ingredients")
try:
ingredients = get_ingredients_llama(top_food)
st.write(ingredients)
except Exception as e:
st.error(f"Error generating ingredients: {e}")
# Footer
st.sidebar.markdown("Created with ❤️ using Streamlit and Hugging Face.")