Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
from PIL import Image | |
# Load the image classification pipeline | |
def load_image_classification_pipeline(): | |
""" | |
Load the image classification pipeline using a pretrained model. | |
""" | |
return pipeline("image-classification", model="Shresthadev403/food-image-classification") | |
pipe_classification = load_image_classification_pipeline() | |
# Load Qwen tokenizer and model | |
def load_qwen_model(): | |
""" | |
Load the Qwen/Qwen2.5-Coder-32B-Instruct model and tokenizer. | |
""" | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct") | |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-Coder-32B-Instruct", device_map="auto") | |
return tokenizer, model | |
# Function to generate ingredients using Qwen | |
def get_ingredients_qwen(food_name, tokenizer, model): | |
""" | |
Generate a list of ingredients for the given food item using the Qwen model. | |
""" | |
prompt = f"List the main ingredients typically used to prepare {food_name}:" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=50) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True).strip() | |
# Streamlit app | |
st.title("Food Image Recognition with Ingredients") | |
# # Add the provided image as a banner | |
# st.image("CTP_Project/IR_IMAGE", caption="Food Recognition Model", use_column_width=True) | |
# Sidebar for model information | |
st.sidebar.title("Model Information") | |
st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification") | |
st.sidebar.write("**LLM for Ingredients**: Qwen2.5-Coder-32B-Instruct") | |
# Upload image | |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"]) | |
# Load the Qwen model and tokenizer | |
tokenizer, model = load_qwen_model() | |
if uploaded_file is not None: | |
# Display the uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
st.write("Classifying...") | |
# Make predictions | |
predictions = pipe_classification(image) | |
# Display only the top prediction | |
top_food = predictions[0]['label'] | |
st.header(f"Food: {top_food}") | |
# Generate and display ingredients for the top prediction | |
st.subheader("Ingredients") | |
try: | |
ingredients = get_ingredients_qwen(top_food, tokenizer, model) | |
st.write(ingredients) | |
except Exception as e: | |
st.error(f"Error generating ingredients: {e}") |