Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from PIL import Image | |
import openai | |
import os | |
# Set your OpenAI API key (replace YOUR_OPENAI_API_KEY with your key) | |
openai.api_key = "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" | |
# Load the image classification pipeline | |
def load_image_classification_pipeline(): | |
return pipeline("image-classification", model="Shresthadev403/food-image-classification") | |
pipe_classification = load_image_classification_pipeline() | |
# Function to generate ingredients using OpenAI | |
def get_ingredients_openai(food_name, model="text-davinci-003"): | |
prompt = f"List the main ingredients typically used to prepare {food_name}:" | |
response = openai.Completion.create( | |
engine=model, # Specify the model here | |
prompt=prompt, | |
max_tokens=50 | |
) | |
return response['choices'][0]['text'].strip() | |
# Streamlit app | |
st.title("Food Image Recognition Model") | |
st.write("Upload an image to classify the type of food and get its ingredients!") | |
# Display a sample image showing the concept of image recognition | |
st.image("https://upload.wikimedia.org/wikipedia/commons/6/69/Classification_example_image.png", | |
caption="Example of an Image Recognition Model", use_column_width=True) | |
# Select OpenAI model | |
st.sidebar.title("Choose a Model") | |
model_choice = st.sidebar.selectbox( | |
"Select an OpenAI Model:", | |
["text-davinci-003", "gpt-3.5-turbo", "gpt-4", "curie"] | |
) | |
# Upload image | |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"]) | |
if uploaded_file is not None: | |
# Display the uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
st.write("Classifying...") | |
# Make predictions | |
predictions = pipe_classification(image) | |
# Display only the top prediction | |
top_food = predictions[0]['label'] | |
st.header(f"Food: {top_food}") | |
# Generate and display ingredients for the top prediction | |
st.subheader("Ingredients") | |
try: | |
ingredients = get_ingredients_openai(top_food, model=model_choice) | |
st.write(ingredients) | |
except Exception as e: | |
st.write("Could not generate ingredients. Please try again later.") |