Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
from PIL import Image | |
from huggingface_hub import InferenceClient | |
import os | |
from gradio_client import Client | |
# Hugging Face API key | |
API_KEY = st.secrets["HF_API_KEY"] | |
# Initialize the Hugging Face Inference Client | |
client = InferenceClient(api_key=API_KEY) | |
# Load the image classification pipeline | |
def load_image_classification_pipeline(): | |
""" | |
Load the image classification pipeline using a pretrained model. | |
""" | |
return pipeline("image-classification", model="Shresthadev403/food-image-classification") | |
pipe_classification = load_image_classification_pipeline() | |
# Function to generate ingredients using Hugging Face Inference Client | |
def get_ingredients_qwen(food_name): | |
""" | |
Generate a list of ingredients for the given food item using Qwen NLP model. | |
Returns a clean, comma-separated list of ingredients. | |
""" | |
messages = [ | |
{ | |
"role": "user", | |
"content": f"List only the main ingredients for {food_name}. " | |
f"Respond in a concise, comma-separated list without any extra text or explanations." | |
} | |
] | |
try: | |
completion = client.chat.completions.create( | |
model="Qwen/Qwen2.5-Coder-32B-Instruct", | |
messages=messages, | |
max_tokens=50 | |
) | |
generated_text = completion.choices[0].message["content"].strip() | |
return generated_text | |
except Exception as e: | |
return f"Error generating ingredients: {e}" | |
# Streamlit app setup | |
st.title("Food Image Recognition with Ingredients") | |
# Add banner image | |
st.image("IR_IMAGE.png", caption="Food Recognition Model", use_container_width=True) | |
# Sidebar for model information | |
st.sidebar.title("Model Information") | |
st.sidebar.write("**Image Classification Model**: Shresthadev403/food-image-classification") | |
st.sidebar.write("**LLM for Ingredients**: Qwen/Qwen2.5-Coder-32B-Instruct") | |
# Upload image | |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"]) | |
if uploaded_file is not None: | |
# Display the uploaded image | |
image = Image.open(uploaded_file) | |
st.image(image, caption="Uploaded Image", use_container_width=True) | |
st.write("Classifying...") | |
# Make predictions | |
predictions = pipe_classification(image) | |
# Display only the top prediction | |
top_food = predictions[0]['label'] | |
st.header(f"Food: {top_food}") | |
# Generate and display ingredients for the top prediction | |
st.subheader("Ingredients") | |
try: | |
ingredients = get_ingredients_qwen(top_food) | |
st.write(ingredients) | |
except Exception as e: | |
st.error(f"Error generating ingredients: {e}") | |
st.subheader("Healthier alternatives:") | |
try: | |
client = Client("https://66cd04274e7fd11327.gradio.live/") | |
result = client.predict(query=f"What's a healthy {top_food} recipe, and why is it healthy?", api_name="/get_response") | |
st.write(result) | |
except Exception as e: | |
st.error(f"Unable to contact RAG: {e}") | |
# Footer | |
st.sidebar.markdown("Developed by Muhammad Hassan Butt.") |