Spaces:
Sleeping
Sleeping
made change
Browse files
app.py
CHANGED
@@ -3,30 +3,114 @@ from transformers import pipeline
|
|
3 |
from PIL import Image
|
4 |
from huggingface_hub import InferenceClient
|
5 |
import os
|
|
|
|
|
6 |
from gradio_client import Client
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Hugging Face API key
|
9 |
API_KEY = st.secrets["HF_API_KEY"]
|
10 |
-
|
11 |
-
# Initialize the Hugging Face Inference Client
|
12 |
client = InferenceClient(api_key=API_KEY)
|
13 |
|
14 |
-
# Load the image classification pipeline
|
15 |
@st.cache_resource
|
16 |
def load_image_classification_pipeline():
|
17 |
-
"""
|
18 |
-
Load the image classification pipeline using a pretrained model.
|
19 |
-
"""
|
20 |
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
|
21 |
|
22 |
pipe_classification = load_image_classification_pipeline()
|
23 |
|
24 |
-
# Function to generate ingredients using Hugging Face Inference Client
|
25 |
def get_ingredients_qwen(food_name):
|
26 |
-
"""
|
27 |
-
Generate a list of ingredients for the given food item using Qwen NLP model.
|
28 |
-
Returns a clean, comma-separated list of ingredients.
|
29 |
-
"""
|
30 |
messages = [
|
31 |
{
|
32 |
"role": "user",
|
@@ -36,57 +120,99 @@ def get_ingredients_qwen(food_name):
|
|
36 |
]
|
37 |
try:
|
38 |
completion = client.chat.completions.create(
|
39 |
-
model="Qwen/Qwen2.5-Coder-32B-Instruct",
|
40 |
-
messages=messages,
|
41 |
-
max_tokens=50
|
42 |
)
|
43 |
-
generated_text = completion.choices[0]
|
44 |
return generated_text
|
45 |
except Exception as e:
|
46 |
return f"Error generating ingredients: {e}"
|
47 |
|
48 |
-
|
49 |
-
st.title("Food Image Recognition with Ingredients")
|
50 |
|
51 |
-
|
52 |
-
st.image("IR_IMAGE.png", caption="Food Recognition Model", use_container_width=True)
|
53 |
|
54 |
-
#
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
if uploaded_file is not None:
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
st.
|
|
|
3 |
from PIL import Image
|
4 |
from huggingface_hub import InferenceClient
|
5 |
import os
|
6 |
+
import openai
|
7 |
+
from openai.error import OpenAIError
|
8 |
from gradio_client import Client
|
9 |
|
10 |
+
# Set page configuration
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="Plate Mate - Your Culinary Assistant",
|
13 |
+
page_icon="🍽️",
|
14 |
+
layout="centered", # center content for better mobile experience
|
15 |
+
initial_sidebar_state="collapsed",
|
16 |
+
)
|
17 |
+
|
18 |
+
def local_css():
|
19 |
+
st.markdown(
|
20 |
+
"""
|
21 |
+
<style>
|
22 |
+
/* General resets */
|
23 |
+
body, html {
|
24 |
+
margin: 0;
|
25 |
+
padding: 0;
|
26 |
+
font-family: "Helvetica Neue", Arial, sans-serif;
|
27 |
+
background-color: #f9f9f9;
|
28 |
+
}
|
29 |
+
|
30 |
+
/* Container and spacing */
|
31 |
+
.css-1aumxhk, .css-keje6w, .css-18e3th9, .css-12oz5g7 {
|
32 |
+
padding-left: 0 !important;
|
33 |
+
padding-right: 0 !important;
|
34 |
+
}
|
35 |
+
|
36 |
+
/* Title styling */
|
37 |
+
.title h1 {
|
38 |
+
text-align: center;
|
39 |
+
font-size: 2.5em;
|
40 |
+
margin-bottom: 0.5em;
|
41 |
+
color: #333;
|
42 |
+
}
|
43 |
+
|
44 |
+
/* Subheader styling */
|
45 |
+
h2, h3, h4, h5, h6 {
|
46 |
+
color: #555;
|
47 |
+
margin-bottom: 0.5em;
|
48 |
+
}
|
49 |
+
|
50 |
+
/* Adjust image styling */
|
51 |
+
img {
|
52 |
+
max-width: 100%;
|
53 |
+
height: auto;
|
54 |
+
border-radius: 8px;
|
55 |
+
}
|
56 |
+
|
57 |
+
/* On mobile, reduce font sizes and margins */
|
58 |
+
@media (max-width: 600px) {
|
59 |
+
.title h1 {
|
60 |
+
font-size: 1.8em;
|
61 |
+
}
|
62 |
+
|
63 |
+
h2, h3, h4 {
|
64 |
+
font-size: 1em;
|
65 |
+
}
|
66 |
+
|
67 |
+
.stButton button {
|
68 |
+
width: 100%;
|
69 |
+
}
|
70 |
+
}
|
71 |
+
|
72 |
+
/* Sidebar adjustments */
|
73 |
+
[data-testid="stSidebar"] {
|
74 |
+
width: 250px;
|
75 |
+
background: #fff;
|
76 |
+
}
|
77 |
+
|
78 |
+
/* Preset images container */
|
79 |
+
.preset-container {
|
80 |
+
display: flex;
|
81 |
+
flex-wrap: wrap;
|
82 |
+
gap: 10px;
|
83 |
+
justify-content: center;
|
84 |
+
margin: 1em 0;
|
85 |
+
}
|
86 |
+
.preset-container img {
|
87 |
+
width: 80px;
|
88 |
+
height: 80px;
|
89 |
+
object-fit: cover;
|
90 |
+
cursor: pointer;
|
91 |
+
border: 2px solid transparent;
|
92 |
+
}
|
93 |
+
.preset-container img:hover {
|
94 |
+
border: 2px solid #007BFF;
|
95 |
+
}
|
96 |
+
|
97 |
+
</style>
|
98 |
+
""", unsafe_allow_html=True
|
99 |
+
)
|
100 |
+
|
101 |
+
local_css() # Apply the CSS
|
102 |
+
|
103 |
# Hugging Face API key
|
104 |
API_KEY = st.secrets["HF_API_KEY"]
|
|
|
|
|
105 |
client = InferenceClient(api_key=API_KEY)
|
106 |
|
|
|
107 |
@st.cache_resource
|
108 |
def load_image_classification_pipeline():
|
|
|
|
|
|
|
109 |
return pipeline("image-classification", model="Shresthadev403/food-image-classification")
|
110 |
|
111 |
pipe_classification = load_image_classification_pipeline()
|
112 |
|
|
|
113 |
def get_ingredients_qwen(food_name):
|
|
|
|
|
|
|
|
|
114 |
messages = [
|
115 |
{
|
116 |
"role": "user",
|
|
|
120 |
]
|
121 |
try:
|
122 |
completion = client.chat.completions.create(
|
123 |
+
model="Qwen/Qwen2.5-Coder-32B-Instruct", messages=messages, max_tokens=50
|
|
|
|
|
124 |
)
|
125 |
+
generated_text = completion.choices[0]['message']['content'].strip()
|
126 |
return generated_text
|
127 |
except Exception as e:
|
128 |
return f"Error generating ingredients: {e}"
|
129 |
|
130 |
+
openai.api_key = st.secrets["openai"]
|
|
|
131 |
|
132 |
+
st.markdown('<div class="title"><h1>PlateMate - Your Culinary Assistant</h1></div>', unsafe_allow_html=True)
|
|
|
133 |
|
134 |
+
# Banner Image (Smaller or optional)
|
135 |
+
banner_image_path = "IR_IMAGE.png"
|
136 |
+
if os.path.exists(banner_image_path):
|
137 |
+
# Display a smaller version of the banner
|
138 |
+
col1, col2, col3 = st.columns([1,3,1])
|
139 |
+
with col2:
|
140 |
+
st.image(banner_image_path, use_container_width=True)
|
141 |
+
else:
|
142 |
+
st.warning(f"Banner image '{banner_image_path}' not found.")
|
143 |
|
144 |
+
# Sidebar Info
|
145 |
+
with st.sidebar:
|
146 |
+
st.title("Model Information")
|
147 |
+
st.write("**Image Classification Model:**")
|
148 |
+
st.write("Shresthadev403/food-image-classification")
|
149 |
+
st.write("**LLM for Ingredients:**")
|
150 |
+
st.write("Qwen/Qwen2.5-Coder-32B-Instruct")
|
151 |
+
st.markdown("---")
|
152 |
+
st.markdown("<p style='text-align: center;'>Developed by Muhammad Hassan Butt.</p>", unsafe_allow_html=True)
|
153 |
+
|
154 |
+
st.subheader("Upload a food image:")
|
155 |
+
|
156 |
+
# Preset Images
|
157 |
+
preset_images = {
|
158 |
+
"Pizza": "sample_pizza.png",
|
159 |
+
"Salad": "sample_salad.png",
|
160 |
+
"Sushi": "sample_sushi.png"
|
161 |
+
}
|
162 |
+
|
163 |
+
selected_preset = st.selectbox("Or choose a preset sample image:", ["None"] + list(preset_images.keys()))
|
164 |
+
if selected_preset != "None":
|
165 |
+
uploaded_file = preset_images[selected_preset]
|
166 |
+
else:
|
167 |
+
uploaded_file = st.file_uploader("", type=["jpg", "png", "jpeg"])
|
168 |
|
169 |
if uploaded_file is not None:
|
170 |
+
if isinstance(uploaded_file, str):
|
171 |
+
# Use the preset image
|
172 |
+
if os.path.exists(uploaded_file):
|
173 |
+
image = Image.open(uploaded_file)
|
174 |
+
else:
|
175 |
+
st.error(f"Sample image '{uploaded_file}' not found.")
|
176 |
+
image = None
|
177 |
+
else:
|
178 |
+
image = Image.open(uploaded_file)
|
179 |
|
180 |
+
if image:
|
181 |
+
st.image(image, caption="Selected Image", use_container_width=True)
|
182 |
|
183 |
+
if st.button("Classify"):
|
184 |
+
with st.spinner("Classifying..."):
|
185 |
+
try:
|
186 |
+
predictions = pipe_classification(image)
|
187 |
+
if predictions:
|
188 |
+
top_food = predictions[0]['label']
|
189 |
+
confidence = predictions[0]['score']
|
190 |
+
st.header(f"🍽️ Food: {top_food} ({confidence*100:.2f}% confidence)")
|
191 |
|
192 |
+
# Generate ingredients
|
193 |
+
st.subheader("📝 Ingredients")
|
194 |
+
try:
|
195 |
+
ingredients = get_ingredients_qwen(top_food)
|
196 |
+
st.write(ingredients)
|
197 |
+
except Exception as e:
|
198 |
+
st.error(f"Error generating ingredients: {e}")
|
199 |
|
200 |
+
# Healthier Alternatives
|
201 |
+
st.subheader("💡 Healthier Alternatives")
|
202 |
+
try:
|
203 |
+
# ONLY THIS PART CHANGED:
|
204 |
+
# Use the RAG calling method instead of the OpenAI function
|
205 |
+
client_rag = Client("https://66cd04274e7fd11327.gradio.live/")
|
206 |
+
result = client_rag.predict(query=f"What's a healthy {top_food} recipe, and why is it healthy?", api_name="/get_response")
|
207 |
+
st.write(result)
|
208 |
+
except OpenAIError as e:
|
209 |
+
st.error(f"OpenAI API error: {e}")
|
210 |
+
except Exception as e:
|
211 |
+
st.error(f"Unable to generate healthier alternatives: {e}")
|
212 |
+
else:
|
213 |
+
st.error("No predictions returned from the classification model.")
|
214 |
+
except Exception as e:
|
215 |
+
st.error(f"Error during classification: {e}")
|
216 |
|
217 |
+
else:
|
218 |
+
st.info("Please select or upload an image to get started.")
|