Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,13 @@ import streamlit as st
|
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
import openai
|
5 |
-
import os
|
6 |
|
7 |
-
# Set your OpenAI API key
|
8 |
openai.api_key = "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"
|
9 |
|
|
|
|
|
|
|
10 |
# Load the image classification pipeline
|
11 |
@st.cache_resource
|
12 |
def load_image_classification_pipeline():
|
@@ -15,29 +17,21 @@ def load_image_classification_pipeline():
|
|
15 |
pipe_classification = load_image_classification_pipeline()
|
16 |
|
17 |
# Function to generate ingredients using OpenAI
|
18 |
-
def get_ingredients_openai(food_name
|
19 |
prompt = f"List the main ingredients typically used to prepare {food_name}:"
|
20 |
response = openai.Completion.create(
|
21 |
-
engine=
|
22 |
prompt=prompt,
|
23 |
max_tokens=50
|
24 |
)
|
25 |
return response['choices'][0]['text'].strip()
|
26 |
|
27 |
# Streamlit app
|
28 |
-
st.title("Food Image Recognition
|
29 |
-
st.write("Upload an image to classify the type of food and get its ingredients!")
|
30 |
-
|
31 |
-
# Display a sample image showing the concept of image recognition
|
32 |
-
st.image("/Users/hassanbutt/Desktop/Screenshot 2024-11-19 at 8.04.00 PM.png",
|
33 |
-
caption="Example of an Image Recognition Model", use_column_width=True)
|
34 |
|
35 |
-
#
|
36 |
-
st.sidebar.title("
|
37 |
-
|
38 |
-
"Select an OpenAI Model:",
|
39 |
-
["text-davinci-003", "gpt-3.5-turbo", "gpt-4", "curie"]
|
40 |
-
)
|
41 |
|
42 |
# Upload image
|
43 |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
|
@@ -58,7 +52,7 @@ if uploaded_file is not None:
|
|
58 |
# Generate and display ingredients for the top prediction
|
59 |
st.subheader("Ingredients")
|
60 |
try:
|
61 |
-
ingredients = get_ingredients_openai(top_food
|
62 |
st.write(ingredients)
|
63 |
except Exception as e:
|
64 |
st.write("Could not generate ingredients. Please try again later.")
|
|
|
2 |
from transformers import pipeline
|
3 |
from PIL import Image
|
4 |
import openai
|
|
|
5 |
|
6 |
+
# Set your OpenAI API key
|
7 |
openai.api_key = "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"
|
8 |
|
9 |
+
# OpenAI model to use
|
10 |
+
OPENAI_MODEL = "gpt-4o" # Replace with the model you want to display
|
11 |
+
|
12 |
# Load the image classification pipeline
|
13 |
@st.cache_resource
|
14 |
def load_image_classification_pipeline():
|
|
|
17 |
pipe_classification = load_image_classification_pipeline()
|
18 |
|
19 |
# Function to generate ingredients using OpenAI
|
20 |
+
def get_ingredients_openai(food_name):
|
21 |
prompt = f"List the main ingredients typically used to prepare {food_name}:"
|
22 |
response = openai.Completion.create(
|
23 |
+
engine=OPENAI_MODEL,
|
24 |
prompt=prompt,
|
25 |
max_tokens=50
|
26 |
)
|
27 |
return response['choices'][0]['text'].strip()
|
28 |
|
29 |
# Streamlit app
|
30 |
+
st.title("Food Image Recognition with Ingredients")
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Display OpenAI model being used
|
33 |
+
st.sidebar.title("Model Information")
|
34 |
+
st.sidebar.write(f"**OpenAI Model Used**: {OPENAI_MODEL}")
|
|
|
|
|
|
|
35 |
|
36 |
# Upload image
|
37 |
uploaded_file = st.file_uploader("Choose a food image...", type=["jpg", "png", "jpeg"])
|
|
|
52 |
# Generate and display ingredients for the top prediction
|
53 |
st.subheader("Ingredients")
|
54 |
try:
|
55 |
+
ingredients = get_ingredients_openai(top_food)
|
56 |
st.write(ingredients)
|
57 |
except Exception as e:
|
58 |
st.write("Could not generate ingredients. Please try again later.")
|