Spaces:
Sleeping
Sleeping
from PIL import Image | |
import cv2 | |
import numpy as np | |
import tensorflow as tf | |
from keras.models import load_model | |
import gradio as gr | |
model =load_model('BrainTumor10Epochs.h5') | |
def getResult(inp): | |
inp=np.array(inp) | |
input_img = np.expand_dims(inp, axis=0) | |
result=np.max(model.predict(input_img)) | |
if result==0: | |
return "No Brain Tumor" | |
elif result==1: | |
return "Yes Brain Tumor" | |
examples = [ | |
["example_images/No_1.jpg"], | |
["example_images/No_2.jpg"], | |
["example_images/No_3.jpg"], | |
["example_images/Yes_1.jpg"], | |
["example_images/Yes_2.jpg"], | |
["example_images/Yes_3.jpg"] | |
] | |
iface = gr.Interface( | |
fn=getResult, | |
inputs=gr.Image(shape=(64, 64)), | |
outputs=gr.Label(num_top_classes=2), | |
title="Brain Tumor Classification", | |
description="Upload the MRI Image of the Brain and it will tell whether it has a Brain Tumor or not", | |
examples=examples | |
) | |
if __name__ == "__main__": | |
iface.launch() |