Spaces:
Sleeping
Sleeping
hatmanstack
commited on
Commit
·
938bf7e
1
Parent(s):
4a065d2
ZeroGPU to CPU
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
import torch
|
4 |
import torchaudio
|
5 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
@@ -9,29 +9,27 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
9 |
model_name = "Hatman/audio-emotion-detection"
|
10 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
11 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
12 |
-
print(device)
|
13 |
-
|
14 |
|
15 |
def preprocess_audio(audio):
|
16 |
waveform, sampling_rate = torchaudio.load(audio)
|
17 |
resampled_waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)(waveform)
|
18 |
return {'speech': resampled_waveform.numpy().flatten(), 'sampling_rate': 16000}
|
19 |
|
20 |
-
|
21 |
def inference(audio):
|
22 |
example = preprocess_audio(audio)
|
23 |
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
|
24 |
-
inputs = inputs #
|
25 |
with torch.no_grad():
|
26 |
logits = model(**inputs).logits
|
27 |
predicted_ids = torch.argmax(logits, dim=-1)
|
28 |
-
return model.config.id2label[predicted_ids.item()], logits, predicted_ids
|
29 |
|
30 |
-
|
31 |
def inference_label(audio):
|
32 |
example = preprocess_audio(audio)
|
33 |
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
|
34 |
-
inputs = inputs
|
35 |
with torch.no_grad():
|
36 |
logits = model(**inputs).logits
|
37 |
predicted_ids = torch.argmax(logits, dim=-1)
|
|
|
1 |
import gradio as gr
|
2 |
+
#import spaces ## For ZeroGPU
|
3 |
import torch
|
4 |
import torchaudio
|
5 |
from transformers import Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification
|
|
|
9 |
model_name = "Hatman/audio-emotion-detection"
|
10 |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
11 |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
|
|
|
|
12 |
|
13 |
def preprocess_audio(audio):
|
14 |
waveform, sampling_rate = torchaudio.load(audio)
|
15 |
resampled_waveform = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=16000)(waveform)
|
16 |
return {'speech': resampled_waveform.numpy().flatten(), 'sampling_rate': 16000}
|
17 |
|
18 |
+
#@spaces.GPU ## For ZeroGPU
|
19 |
def inference(audio):
|
20 |
example = preprocess_audio(audio)
|
21 |
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
|
22 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()} # Not necessary on ZeroGPU
|
23 |
with torch.no_grad():
|
24 |
logits = model(**inputs).logits
|
25 |
predicted_ids = torch.argmax(logits, dim=-1)
|
26 |
+
return model.config.id2label[predicted_ids.item()], logits, predicted_ids
|
27 |
|
28 |
+
#@spaces.GPU ## For ZeroGPU
|
29 |
def inference_label(audio):
|
30 |
example = preprocess_audio(audio)
|
31 |
inputs = feature_extractor(example['speech'], sampling_rate=16000, return_tensors="pt", padding=True)
|
32 |
+
inputs = {k: v.to('cpu') for k, v in inputs.items()} # Not necessary on ZeroGPU
|
33 |
with torch.no_grad():
|
34 |
logits = model(**inputs).logits
|
35 |
predicted_ids = torch.argmax(logits, dim=-1)
|