File size: 4,478 Bytes
92d7f1e
 
d28e9af
2ddd1e5
62e947b
 
 
 
 
 
d28e9af
62e947b
 
 
 
 
 
d28e9af
62e947b
d28e9af
 
 
62e947b
92d7f1e
d28e9af
 
 
 
 
92d7f1e
 
 
 
 
2ddd1e5
d28e9af
 
 
92d7f1e
d28e9af
 
 
 
2ddd1e5
92d7f1e
 
d28e9af
92d7f1e
 
 
8b5c657
d28e9af
2ddd1e5
d28e9af
 
 
 
 
8b5c657
d28e9af
 
 
 
 
8b5c657
d28e9af
2ddd1e5
 
 
 
d28e9af
92d7f1e
 
d28e9af
8b5c657
92d7f1e
d28e9af
cd81b99
 
 
37a110b
 
 
 
 
 
62e947b
 
37a110b
 
 
 
 
 
d28e9af
37a110b
 
92d7f1e
 
 
 
52e0217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import streamlit as st
import torch
from transformers import AutoModelForCausalLM
import difflib
import requests
import os
import json

FIREBASE_URL = os.getenv("FIREBASE_URL")


def fetch_from_firebase(model_id):
    response = requests.get(f"{FIREBASE_URL}/model_structures/{model_id}.json")
    if response.status_code == 200:
        return response.json()
    return None


def save_to_firebase(model_id, structure):
    response = requests.put(
        f"{FIREBASE_URL}/model_structures/{model_id}.json", data=json.dumps(structure)
    )
    return response.status_code == 200


def get_model_structure(model_id) -> list[str]:
    struct_lines = fetch_from_firebase(model_id)
    if struct_lines:
        return struct_lines
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.bfloat16,
        device_map="cpu",
    )
    structure = {k: str(v.shape) for k, v in model.state_dict().items()}
    struct_lines = [f"{k}: {v}" for k, v in structure.items()]
    save_to_firebase(model_id, struct_lines)
    return struct_lines


def compare_structures(struct1_lines: list[str], struct2_lines: list[str]):
    # struct1_lines = [f"{k}: {v}" for k, v in struct1.items()]
    # struct2_lines = [f"{k}: {v}" for k, v in struct2.items()]
    diff = difflib.ndiff(struct1_lines, struct2_lines)
    return diff


def display_diff(diff):
    left_lines = []
    right_lines = []
    diff_found = False

    for line in diff:
        if line.startswith("- "):
            left_lines.append(
                f'<span style="background-color: #ffdddd;">{line[2:]}</span>'
            )
            right_lines.append("")
            diff_found = True
        elif line.startswith("+ "):
            right_lines.append(
                f'<span style="background-color: #ddffdd;">{line[2:]}</span>'
            )
            left_lines.append("")
            diff_found = True
        elif line.startswith("  "):
            left_lines.append(line[2:])
            right_lines.append(line[2:])
        else:
            pass

    left_html = "<br>".join(left_lines)
    right_html = "<br>".join(right_lines)

    return left_html, right_html, diff_found


# Set Streamlit page configuration to wide mode
st.set_page_config(layout="wide")

# Apply custom CSS for wider layout
st.markdown(
    """
    <style>
    .reportview-container .main .block-container {
        max-width: 100%;
        padding-left: 10%;
        padding-right: 10%;
    }
    .stMarkdown {
        white-space: pre-wrap;
    }
    </style>
    """,
    unsafe_allow_html=True,
)

st.title("Model Structure Comparison Tool")
model_id1 = st.text_input("Enter the first HuggingFace Model ID")
model_id2 = st.text_input("Enter the second HuggingFace Model ID")

if "compare_button_clicked" not in st.session_state:
    st.session_state.compare_button_clicked = False

if st.session_state.compare_button_clicked:
    with st.spinner('Comparing models and loading tokenizers...'):
        if model_id1 and model_id2:
            struct1 = get_model_structure(model_id1)
            struct2 = get_model_structure(model_id2)
            
            diff = compare_structures(struct1, struct2)
            left_html, right_html, diff_found = display_diff(diff)
            
            st.write("### Comparison Result")
            if not diff_found:
                st.success("The model structures are identical.")
            
            col1, col2 = st.columns([1.5, 1.5])  # Adjust the ratio to make columns wider

            with col1:
                st.write("### Model 1")
                st.markdown(left_html, unsafe_allow_html=True)

            with col2:
                st.write("### Model 2")
                st.markdown(right_html, unsafe_allow_html=True)
                
            # Tokenizer verification
            try:
                tokenizer1 = AutoTokenizer.from_pretrained(model_id1)
                tokenizer2 = AutoTokenizer.from_pretrained(model_id2)
                st.write(f"**{model_id1} Tokenizer Vocab Size**: {tokenizer1.vocab_size}")
                st.write(f"**{model_id2} Tokenizer Vocab Size**: {tokenizer2.vocab_size}")
            except Exception as e:
                st.error(f"Error loading tokenizers: {e}")
        else:
            st.error("Please enter both model IDs.")
        st.session_state.compare_button_clicked = False
else:
    if st.button("Compare Models"):
        st.session_state.compare_button_clicked = True