File size: 3,213 Bytes
92d7f1e
 
 
2ddd1e5
62e947b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92d7f1e
 
62e947b
 
 
92d7f1e
 
 
 
 
2ddd1e5
62e947b
92d7f1e
 
62e947b
92d7f1e
2ddd1e5
 
 
92d7f1e
 
 
 
 
8b5c657
92d7f1e
2ddd1e5
 
 
 
8b5c657
2ddd1e5
 
 
8b5c657
2ddd1e5
 
 
 
 
92d7f1e
 
 
 
8b5c657
92d7f1e
cd81b99
 
 
37a110b
 
 
 
 
 
62e947b
 
37a110b
 
 
 
 
 
 
 
 
92d7f1e
 
 
 
 
 
 
 
 
8b5c657
92d7f1e
 
8b5c657
 
0ed90e0
 
8b5c657
0ed90e0
 
 
8b5c657
0ed90e0
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import streamlit as st
import torch
from transformers import AutoModelForCausalLM
import difflib
import requests
import os
import json

FIREBASE_URL = os.getenv("FIREBASE_URL")

def fetch_from_firebase(model_id):
    response = requests.get(f"{FIREBASE_URL}/model_structures/{model_id}.json")
    if response.status_code == 200:
        return response.json()
    return None

def save_to_firebase(model_id, structure):
    response = requests.put(f"{FIREBASE_URL}/model_structures/{model_id}.json", data=json.dumps(structure))
    return response.status_code == 200

def get_model_structure(model_id):
    structure = fetch_from_firebase(model_id)
    if structure:
        return structure
    model = AutoModelForCausalLM.from_pretrained(
        model_id,
        torch_dtype=torch.bfloat16,
        device_map="cpu",
    )
    structure = {k: str(v.shape) for k, v in model.state_dict().items()}
    save_to_firebase(model_id, structure)
    return structure


def compare_structures(struct1, struct2):
    struct1_lines = [f"{k}: {v}" for k, v in struct1.items()]
    struct2_lines = [f"{k}: {v}" for k, v in struct2.items()]
    diff = difflib.ndiff(struct1_lines, struct2_lines)
    return diff

def display_diff(diff):
    left_lines = []
    right_lines = []
    diff_found = False
    
    for line in diff:
        if line.startswith('- '):
            left_lines.append(f'<span style="background-color: #ffdddd;">{line[2:]}</span>')
            right_lines.append('')
            diff_found = True
        elif line.startswith('+ '):
            right_lines.append(f'<span style="background-color: #ddffdd;">{line[2:]}</span>')
            left_lines.append('')
            diff_found = True
        elif line.startswith('  '):
            left_lines.append(line[2:])
            right_lines.append(line[2:])
        else:
            pass
    
    left_html = "<br>".join(left_lines)
    right_html = "<br>".join(right_lines)
    
    return left_html, right_html, diff_found

# Set Streamlit page configuration to wide mode
st.set_page_config(layout="wide")

# Apply custom CSS for wider layout
st.markdown(
    """
    <style>
    .reportview-container .main .block-container {
        max-width: 100%;
        padding-left: 10%;
        padding-right: 10%;
    }
    .stMarkdown {
        white-space: pre-wrap;
    }
    </style>
    """,
    unsafe_allow_html=True
)

st.title("Model Structure Comparison Tool")
model_id1 = st.text_input("Enter the first HuggingFace Model ID")
model_id2 = st.text_input("Enter the second HuggingFace Model ID")

if model_id1 and model_id2:
    struct1 = get_model_structure(model_id1)
    struct2 = get_model_structure(model_id2)
    
    diff = compare_structures(struct1, struct2)
    left_html, right_html, diff_found = display_diff(diff)
    
    st.write("### Comparison Result")
    if not diff_found:
        st.success("The model structures are identical.")
    
    col1, col2 = st.columns([1.5, 1.5])  # Adjust the ratio to make columns wider

    with col1:
        st.write("### Model 1")
        st.markdown(left_html, unsafe_allow_html=True)

    with col2:
        st.write("### Model 2")
        st.markdown(right_html, unsafe_allow_html=True)