File size: 2,059 Bytes
7efe748
 
 
 
 
43d3f36
7efe748
 
 
 
 
 
 
 
 
 
43d3f36
 
 
7efe748
 
 
 
 
 
 
 
43d3f36
 
 
 
 
 
 
 
7efe748
 
43d3f36
 
 
 
 
7efe748
 
 
 
43d3f36
7efe748
43d3f36
a8dea39
43d3f36
 
 
 
 
 
 
 
 
a8dea39
43d3f36
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import os
import warnings
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
import torch
from flask_cors import CORS
from flask import Flask, request, json, Response
import numpy as np
from PIL import Image
import requests
from io import BytesIO

os.environ["CUDA_VISIBLE_DEVICES"] = ""

app = Flask(__name__)
cors = CORS(app)

# Define the model and feature extractor globally
model = AutoModelForImageClassification.from_pretrained('carbon225/vit-base-patch16-224-hentai')
feature_extractor = AutoFeatureExtractor.from_pretrained('carbon225/vit-base-patch16-224-hentai')

@app.route("/", methods=["GET"])
def default():
    return json.dumps({"Hello I am Chitti": "Speed 1 Terra Hertz, Memory 1 Zeta Byte"})

@app.route("/predict", methods=["GET"])
def predict():
    try:
        src = request.args.get("src")
        print(f"{src=}")

        # Download image from the provided URL
        response = requests.get(src)
        response.raise_for_status()  # Check for HTTP errors

        # Open and preprocess the image
        image = Image.open(BytesIO(response.content))
        image = image.resize((128, 128))

        # Extract features using the pre-trained feature extractor
        encoding = feature_extractor(images=image.convert("RGB"), return_tensors="pt")

        # Make a prediction using the pre-trained model
        with torch.no_grad():
            outputs = model(**encoding)
            logits = outputs.logits

        # Get the predicted class index and label
        predicted_class_idx = logits.argmax(-1).item()
        predicted_class_label = model.config.id2label[predicted_class_idx]

        print(predicted_class_label)

        # Return the predictions
        return json.dumps({"class": predicted_class_label})

    except requests.exceptions.RequestException as e:
        return json.dumps({"error": f"Request error: {str(e)}"})
    except Exception as e:
        return json.dumps({"error": f"An unexpected error occurred: {str(e)}"})

if __name__ == "__main__":
    app.run(debug=True)