HawkeyeHS's picture
Fixed error
9fdc2d8
raw
history blame
3.54 kB
import os
from transformers import pipeline
from flask_cors import CORS
from flask import Flask, request, json
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin
import google.generativeai as genai
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_google_genai import ChatGoogleGenerativeAI
from dotenv import load_dotenv
os.environ["CUDA_VISIBLE_DEVICES"] = ""
app = Flask(__name__)
cors = CORS(app)
load_dotenv()
# # Define the model and feature extractor globally
# model = AutoModelForImageClassification.from_pretrained('carbon225/vit-base-patch16-224-hentai')
# feature_extractor = AutoFeatureExtractor.from_pretrained('carbon225/vit-base-patch16-224-hentai')
def load_model():
api_key=os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=api_key)
model = ChatGoogleGenerativeAI(model="gemini-pro",
temperature=0.3)
return model
def load_embeddings():
embeddings = GoogleGenerativeAIEmbeddings(model = "models/embedding-001")
return embeddings
@app.route("/", methods=["GET"])
def default():
return json.dumps({"Server": "Working"})
@app.route("/extractimages",methods=["GET"])
def extract_images():
try:
src=request.args.get("src")
response = requests.get(src)
soup = BeautifulSoup(response.content,'html.parser')
img_urls=[]
img_tags = soup.select('div img')
for img_tag in img_tags:
img_url = urljoin(src, img_tag['src'])
img_urls.append(img_url)
return json.dumps({"images":img_urls})
except Exception as e:
return e
api_key=os.getenv("GOOGLE_API_KEY")
genai.configure(api_key=api_key)
model=genai.GenerativeModel('gemini-pro')
sentiment_analysis = pipeline("sentiment-analysis",model="siebert/sentiment-roberta-large-english")
# @app.route('/sentiment',methods=['POST'])
# def sentiment():
# @app.route("/predict", methods=["GET"])
# def predict():
# try:
# src = request.args.get("src")
# # Download image from the provided URL
# response = requests.get(src)
# response.raise_for_status()
# # Open and preprocess the image
# image = Image.open(BytesIO(response.content))
# image = image.resize((128, 128))
# # Extract features using the pre-trained feature extractor
# encoding = feature_extractor(images=image.convert("RGB"), return_tensors="pt")
# # Make a prediction using the pre-trained model
# with torch.no_grad():
# outputs = model(**encoding)
# logits = outputs.logits
# # Get the predicted class index and label
# predicted_class_idx = logits.argmax(-1).item()
# predicted_class_label = model.config.id2label[predicted_class_idx]
# # Return the predictions
# return json.dumps({"class": predicted_class_label})
# except requests.exceptions.RequestException as e:
# return json.dumps({"error": f"Request error: {str(e)}"})
# except Exception as e:
# return json.dumps({"error": f"An unexpected error occurred: {str(e)}"})
@app.route('/answer',methods=['POST'])
def answer():
query=request.get_json()['query']
final_query=f"""
Following are negative reviews about my products, suggest what are the key issues from the customer feedback:{query}
"""
response = model.generate_content(final_query)
return json.dumps({"message":response.text})
if __name__ == "__main__":
app.run(debug=True)