import os import warnings from transformers import AutoModelForImageClassification, AutoFeatureExtractor import torch from flask_cors import CORS from flask import Flask, request, json, Response import numpy as np from PIL import Image import requests from io import BytesIO from bs4 import BeautifulSoup os.environ["CUDA_VISIBLE_DEVICES"] = "" app = Flask(__name__) cors = CORS(app) # Define the model and feature extractor globally model = AutoModelForImageClassification.from_pretrained('carbon225/vit-base-patch16-224-hentai') feature_extractor = AutoFeatureExtractor.from_pretrained('carbon225/vit-base-patch16-224-hentai') @app.route("/", methods=["GET"]) def default(): return json.dumps({"Server": "Working"}) @app.route("/extractimages",methods=["GET"]) def extract_images(): try: src=request.args.get("src") response = requests.get(src) soup = BeautifulSoup(response.content,'html.parser') img_urls=[] img_tags = soup.select('div img') for img_tag in img_tags: img_url = img_tag['src'] img_urls.append(img_url) return json.dumps({"images":img_urls}) except Exception as e: return e @app.route("/predict", methods=["GET"]) def predict(): try: src = request.args.get("src") # Download image from the provided URL response = requests.get(src) response.raise_for_status() # Check for HTTP errors # Open and preprocess the image image = Image.open(BytesIO(response.content)) image = image.resize((128, 128)) # Extract features using the pre-trained feature extractor encoding = feature_extractor(images=image.convert("RGB"), return_tensors="pt") # Make a prediction using the pre-trained model with torch.no_grad(): outputs = model(**encoding) logits = outputs.logits # Get the predicted class index and label predicted_class_idx = logits.argmax(-1).item() predicted_class_label = model.config.id2label[predicted_class_idx] # Return the predictions return json.dumps({"class": predicted_class_label}) except requests.exceptions.RequestException as e: return json.dumps({"error": f"Request error: {str(e)}"}) except Exception as e: return json.dumps({"error": f"An unexpected error occurred: {str(e)}"}) if __name__ == "__main__": app.run(debug=True)