Spaces:
Runtime error
Runtime error
import os | |
from transformers import AutoModelForImageClassification, AutoFeatureExtractor | |
import torch | |
from flask_cors import CORS | |
from flask import Flask, request, json | |
from PIL import Image | |
import requests | |
from io import BytesIO | |
from bs4 import BeautifulSoup | |
from urllib.parse import urljoin | |
os.environ["CUDA_VISIBLE_DEVICES"] = "" | |
app = Flask(__name__) | |
cors = CORS(app) | |
# Define the model and feature extractor globally | |
model = AutoModelForImageClassification.from_pretrained('carbon225/vit-base-patch16-224-hentai') | |
feature_extractor = AutoFeatureExtractor.from_pretrained('carbon225/vit-base-patch16-224-hentai') | |
def predict(response): | |
try: | |
# Open and preprocess the image | |
image = Image.open(BytesIO(response.content)) | |
image = image.resize((128, 128)) | |
# Extract features using the pre-trained feature extractor | |
encoding = feature_extractor(images=image.convert("RGB"), return_tensors="pt") | |
# Make a prediction using the pre-trained model | |
with torch.no_grad(): | |
outputs = model(**encoding) | |
logits = outputs.logits | |
# Get the predicted class index and label | |
predicted_class_idx = logits.argmax(-1).item() | |
predicted_class_label = model.config.id2label[predicted_class_idx] | |
return predicted_class_label | |
except Exception as e: | |
print(f"Error in predicting image: {str(e)}") | |
return None | |
def default(): | |
return json.dumps({"Server": "Working"}) | |
def extract_images(): | |
try: | |
src = request.args.get("src") | |
response = requests.get(src) | |
soup = BeautifulSoup(response.content, 'html.parser') | |
img_tags = soup.select('div img') | |
for img_tag in img_tags: | |
img_url = urljoin(src, img_tag['src']) | |
response = requests.get(img_url) | |
response.raise_for_status() | |
predicted_class_label = predict(response) | |
if predicted_class_label == 'explicit' or predicted_class_label == 'suggestive': | |
return json.dumps({"class": predicted_class_label}) | |
return json.dumps({"class": "safe"}) | |
except Exception as e: | |
print(f"Error in processing images: {str(e)}") | |
return json.dumps({"class": "safe"}) | |
def predict_image(): | |
try: | |
src = request.args.get("src") | |
# Download image from the provided URL | |
response = requests.get(src) | |
response.raise_for_status() | |
predicted_class_label = predict(response) | |
# Return the predictions | |
return json.dumps({"class": predicted_class_label}) | |
except requests.exceptions.RequestException as e: | |
return json.dumps({"error": f"Request error: {str(e)}"}) | |
except Exception as e: | |
return json.dumps({"error": f"An unexpected error occurred: {str(e)}"}) | |
if __name__ == "__main__": | |
app.run(debug=True) | |