ImageExplicit / app.py
HawkeyeHS's picture
Add files
d9e40e8
import os
from transformers import AutoModelForImageClassification, AutoFeatureExtractor
import torch
from flask_cors import CORS
from flask import Flask, request, json
from PIL import Image
import requests
from io import BytesIO
from bs4 import BeautifulSoup
from urllib.parse import urljoin
os.environ["CUDA_VISIBLE_DEVICES"] = ""
app = Flask(__name__)
cors = CORS(app)
# Define the model and feature extractor globally
model = AutoModelForImageClassification.from_pretrained('carbon225/vit-base-patch16-224-hentai')
feature_extractor = AutoFeatureExtractor.from_pretrained('carbon225/vit-base-patch16-224-hentai')
def predict(response):
try:
# Open and preprocess the image
image = Image.open(BytesIO(response.content))
image = image.resize((128, 128))
# Extract features using the pre-trained feature extractor
encoding = feature_extractor(images=image.convert("RGB"), return_tensors="pt")
# Make a prediction using the pre-trained model
with torch.no_grad():
outputs = model(**encoding)
logits = outputs.logits
# Get the predicted class index and label
predicted_class_idx = logits.argmax(-1).item()
predicted_class_label = model.config.id2label[predicted_class_idx]
return predicted_class_label
except Exception as e:
print(f"Error in predicting image: {str(e)}")
return None
@app.route("/", methods=["GET"])
def default():
return json.dumps({"Server": "Working"})
@app.route("/extractimages", methods=["GET"])
def extract_images():
try:
src = request.args.get("src")
response = requests.get(src)
soup = BeautifulSoup(response.content, 'html.parser')
img_tags = soup.select('div img')
for img_tag in img_tags:
img_url = urljoin(src, img_tag['src'])
response = requests.get(img_url)
response.raise_for_status()
predicted_class_label = predict(response)
if predicted_class_label == 'explicit' or predicted_class_label == 'suggestive':
return json.dumps({"class": predicted_class_label})
return json.dumps({"class": "safe"})
except Exception as e:
print(f"Error in processing images: {str(e)}")
return json.dumps({"class": "safe"})
@app.route("/predict", methods=["GET"])
def predict_image():
try:
src = request.args.get("src")
# Download image from the provided URL
response = requests.get(src)
response.raise_for_status()
predicted_class_label = predict(response)
# Return the predictions
return json.dumps({"class": predicted_class_label})
except requests.exceptions.RequestException as e:
return json.dumps({"error": f"Request error: {str(e)}"})
except Exception as e:
return json.dumps({"error": f"An unexpected error occurred: {str(e)}"})
if __name__ == "__main__":
app.run(debug=True)