Spaces:
Runtime error
Runtime error
File size: 1,894 Bytes
00454cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
import gradio as gr
import model_loader
import pipeline
from transformers import CLIPTokenizer
import torch
import cv2
from download import download
DEVICE = "cpu"
ALLOW_CUDA = True
ALLOW_MPS = False
if torch.cuda.is_available() and ALLOW_CUDA:
DEVICE = "cuda"
elif (torch.has_mps or torch.backends.mps.is_available()) and ALLOW_MPS:
DEVICE = "mps"
print(f"Using device: {DEVICE}")
def generate_image(prompt):
tokenizer = CLIPTokenizer(r"./data/vocab.json", merges_file="./data/merges.txt")
model_file = "./data/v1-5-pruned-emaonly.ckpt"
models = model_loader.preload_models_from_standard_weights(model_file, DEVICE)
## TEXT TO IMAGE
uncond_prompt = "" # Also known as negative prompt
do_cfg = True
cfg_scale = 8 # min: 1, max: 14
## SAMPLER
sampler = "ddpm"
num_inference_steps = 50
seed = 42
output_image = pipeline.generate(
prompt=prompt,
uncond_prompt=uncond_prompt,
input_image=None,
strength=0.5,
do_cfg=do_cfg,
cfg_scale=cfg_scale,
sampler_name=sampler,
n_inference_steps=num_inference_steps,
seed=seed,
models=models,
device=DEVICE,
idle_device="cpu",
tokenizer=tokenizer,
)
image = cv2.cvtColor(output_image, cv2.COLOR_RGB2BGR)
return image
with gr.Blocks() as demo:
gr.Markdown('# Diffusion')
with gr.Row():
with gr.Column():
# Add a text box
prompt = gr.Textbox(lines=3, label="Prompt", placeholder="Enter a prompt")
print(prompt)
with gr.Column():
output_image = gr.Image(label="Generated Image")
submit_button_image = gr.Button("Generate Image")
submit_button_image.click(generate_image, inputs=prompt, outputs=output_image)
if __name__ == "__main__":
download()
demo.launch()
|