|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Training DALL路E Mini. |
|
Script adapted from run_summarization_flax.py |
|
""" |
|
|
|
import io |
|
import logging |
|
import os |
|
import sys |
|
import tempfile |
|
import time |
|
from dataclasses import asdict, dataclass, field |
|
from pathlib import Path |
|
from typing import Any, Callable, NamedTuple, Optional |
|
|
|
import datasets |
|
import flax |
|
import jax |
|
import jax.numpy as jnp |
|
import jaxlib |
|
import numpy as np |
|
import optax |
|
import transformers |
|
import wandb |
|
from datasets import Dataset |
|
from flax import core, struct, traverse_util |
|
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze |
|
from flax.serialization import from_bytes, to_bytes |
|
from flax.training.common_utils import onehot |
|
from jax.experimental import PartitionSpec, maps |
|
from jax.experimental.compilation_cache import compilation_cache as cc |
|
from jax.experimental.pjit import pjit, with_sharding_constraint |
|
from scalable_shampoo.distributed_shampoo import GraftingType, distributed_shampoo |
|
from tqdm import tqdm |
|
from transformers import HfArgumentParser |
|
|
|
import dalle_mini |
|
from dalle_mini.data import Dataset |
|
from dalle_mini.model import ( |
|
DalleBart, |
|
DalleBartConfig, |
|
DalleBartTokenizer, |
|
set_partitions, |
|
) |
|
|
|
try: |
|
from google.cloud import storage |
|
except: |
|
storage = None |
|
|
|
cc.initialize_cache("./jax_cache", max_cache_size_bytes=10 * 2**30) |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
@dataclass |
|
class ModelArguments: |
|
""" |
|
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch. |
|
""" |
|
|
|
model_name_or_path: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The model checkpoint for weights initialization. " |
|
"Don't set if you want to train a model from scratch. " |
|
"W&B artifact references are supported in addition to the sources supported by `PreTrainedModel`." |
|
}, |
|
) |
|
config_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Pretrained config name or path if not the same as model_name_or_path" |
|
}, |
|
) |
|
tokenizer_name: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Pretrained tokenizer name or path if not the same as model_name_or_path" |
|
}, |
|
) |
|
dtype: Optional[str] = field( |
|
default="float32", |
|
metadata={ |
|
"help": "Floating-point format in which the computations will be performed (not the model weights). Choose one of `[float32, float16, bfloat16]`." |
|
}, |
|
) |
|
restore_state: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": "Restore optimizer and training state. Can be True (will retrieve associated wandb artifact), a local directory or a Google bucket path." |
|
}, |
|
) |
|
dropout: Optional[float] = field( |
|
default=None, |
|
metadata={"help": "Dropout rate. Overwrites config."}, |
|
) |
|
activation_dropout: Optional[float] = field( |
|
default=None, |
|
metadata={"help": "Activation dropout rate. Overwrites config."}, |
|
) |
|
attention_dropout: Optional[float] = field( |
|
default=None, |
|
metadata={"help": "Attention dropout rate. Overwrites config."}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.tokenizer_name is None: |
|
self.tokenizer_name = self.model_name_or_path |
|
assert ( |
|
self.tokenizer_name is not None |
|
), "Tokenizer name or model name/path needs to be specified" |
|
if self.restore_state: |
|
assert self.model_name_or_path is not None and ( |
|
"/model-" in self.model_name_or_path |
|
), "Restoring state only available with W&B artifact reference" |
|
|
|
def get_metadata(self): |
|
if self.model_name_or_path is not None and ":" in self.model_name_or_path: |
|
if jax.process_index() == 0: |
|
artifact = wandb.run.use_artifact(self.model_name_or_path) |
|
else: |
|
artifact = wandb.Api().artifact(self.model_name_or_path) |
|
return artifact.metadata |
|
else: |
|
return dict() |
|
|
|
def get_opt_state(self): |
|
with tempfile.TemporaryDirectory() as tmp_dir: |
|
if self.restore_state is True: |
|
|
|
state_artifact = self.model_name_or_path.replace( |
|
"/model-", "/state-", 1 |
|
) |
|
if jax.process_index() == 0: |
|
artifact = wandb.run.use_artifact(state_artifact) |
|
else: |
|
artifact = wandb.Api().artifact(state_artifact) |
|
if artifact.metadata.get("bucket_path"): |
|
|
|
self.restore_state = artifact.metadata["bucket_path"] |
|
else: |
|
artifact_dir = artifact.download(tmp_dir) |
|
self.restore_state = str(Path(artifact_dir) / "opt_state.msgpack") |
|
|
|
if self.restore_state.startswith("gs://"): |
|
bucket_path = Path(self.restore_state[5:]) / "opt_state.msgpack" |
|
bucket, blob_name = str(bucket_path).split("/", 1) |
|
assert ( |
|
storage is not None |
|
), 'Could not find google.storage. Install with "pip install google-cloud-storage"' |
|
client = storage.Client() |
|
bucket = client.bucket(bucket) |
|
blob = bucket.blob(blob_name) |
|
return blob.download_as_bytes() |
|
|
|
with Path(self.restore_state).open("rb") as f: |
|
return f.read() |
|
|
|
|
|
@dataclass |
|
class DataTrainingArguments: |
|
""" |
|
Arguments pertaining to what data we are going to input our model for training and eval. |
|
""" |
|
|
|
text_column: Optional[str] = field( |
|
default="caption", |
|
metadata={ |
|
"help": "The name of the column in the datasets containing the full texts (for summarization)." |
|
}, |
|
) |
|
encoding_column: Optional[str] = field( |
|
default="encoding", |
|
metadata={ |
|
"help": "The name of the column in the datasets containing the image encodings." |
|
}, |
|
) |
|
dataset_repo_or_path: str = field( |
|
default=None, |
|
metadata={"help": "The dataset repository containing encoded files."}, |
|
) |
|
train_file: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The input training data file (glob & braceexpand acceptable)." |
|
}, |
|
) |
|
validation_file: Optional[str] = field( |
|
default=None, |
|
metadata={ |
|
"help": "An optional input evaluation data file (glob & braceexpand acceptable)." |
|
}, |
|
) |
|
|
|
streaming: Optional[bool] = field( |
|
default=True, |
|
metadata={"help": "Whether to stream the dataset."}, |
|
) |
|
use_auth_token: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to use the authentication token for private datasets." |
|
}, |
|
) |
|
shard_by_host: Optional[bool] = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to shard data files by host in multi-host environments." |
|
}, |
|
) |
|
blank_caption_prob: Optional[float] = field( |
|
default=0.0, |
|
metadata={ |
|
"help": "Probability of removing some captions for classifier-free guidance." |
|
}, |
|
) |
|
clip_score_column: Optional[str] = field( |
|
default="clip_score", |
|
metadata={"help": "Column that containts clip score for filtering."}, |
|
) |
|
min_clip_score: Optional[float] = field( |
|
default=None, |
|
metadata={"help": "Minimum clip score required."}, |
|
) |
|
max_clip_score: Optional[float] = field( |
|
default=None, |
|
metadata={"help": "Maximum clip score required."}, |
|
) |
|
filter_column: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Column that containts classes to be filtered."}, |
|
) |
|
filter_value: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "Class value to be kept during filtering."}, |
|
) |
|
max_train_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of training examples." |
|
}, |
|
) |
|
max_eval_samples: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples." |
|
}, |
|
) |
|
preprocessing_num_workers: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "The number of processes to use for the preprocessing. Not used in streaming mode." |
|
}, |
|
) |
|
overwrite_cache: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Overwrite the cached training and evaluation sets. Not used in streaming mode." |
|
}, |
|
) |
|
|
|
seed_dataset: int = field( |
|
default=None, |
|
metadata={ |
|
"help": "Random seed for the dataset that will be set at the beginning of training." |
|
}, |
|
) |
|
|
|
def __post_init__(self): |
|
if self.dataset_repo_or_path is None: |
|
raise ValueError("Need a dataset repository or path.") |
|
|
|
|
|
@dataclass |
|
class TrainingArguments: |
|
""" |
|
Arguments pertaining to training parameters. |
|
""" |
|
|
|
output_dir: str = field( |
|
metadata={ |
|
"help": "The output directory where the model predictions and checkpoints will be written." |
|
}, |
|
) |
|
overwrite_output_dir: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": ( |
|
"Overwrite the content of the output directory. " |
|
"Use this to continue training if output_dir points to a checkpoint directory." |
|
) |
|
}, |
|
) |
|
|
|
do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) |
|
do_eval: bool = field( |
|
default=False, metadata={"help": "Whether to run eval on the validation set."} |
|
) |
|
|
|
per_device_train_batch_size: int = field( |
|
default=8, |
|
metadata={"help": "Batch size per data parallel device for training."}, |
|
) |
|
per_device_eval_batch_size: Optional[int] = field( |
|
default=None, |
|
metadata={ |
|
"help": "Batch size per data parallel device for evaluation. Same as training batch size if not set." |
|
}, |
|
) |
|
|
|
gradient_accumulation_steps: int = field( |
|
default=1, |
|
metadata={ |
|
"help": "Number of updates steps to accumulate before performing an update pass." |
|
}, |
|
) |
|
gradient_checkpointing: bool = field( |
|
default=False, metadata={"help": "Use gradient checkpointing."} |
|
) |
|
|
|
learning_rate: float = field( |
|
default=5e-5, metadata={"help": "The initial learning rate."} |
|
) |
|
optim: str = field( |
|
default="distributed_shampoo", |
|
metadata={ |
|
"help": 'The optimizer to use. Can be "distributed_shampoo" (default), "adam" or "adafactor"' |
|
}, |
|
) |
|
weight_decay: float = field( |
|
default=0.0, metadata={"help": "Weight decay applied to parameters."} |
|
) |
|
beta1: float = field( |
|
default=0.9, |
|
metadata={"help": "Beta1 for Adam & Distributed Shampoo."}, |
|
) |
|
beta2: float = field( |
|
default=0.999, |
|
metadata={"help": "Beta2 for for Adam & Distributed Shampoo."}, |
|
) |
|
adam_epsilon: float = field( |
|
default=1e-8, metadata={"help": "Epsilon for AdamW optimizer."} |
|
) |
|
max_grad_norm: float = field( |
|
default=1.0, metadata={"help": "Max gradient norm for Adafactor."} |
|
) |
|
block_size: int = field( |
|
default=1024, |
|
metadata={"help": "Chunked size for large layers with Distributed Shampoo."}, |
|
) |
|
preconditioning_compute_steps: int = field( |
|
default=10, metadata={"help": "Number of steps to update preconditioner."} |
|
) |
|
skip_preconditioning_dim_size_gt: int = field( |
|
default=4096, |
|
metadata={"help": "Max size for preconditioning with Distributed Shampoo."}, |
|
) |
|
graft_type: str = field( |
|
default="rmsprop_normalized", |
|
metadata={ |
|
"help": "The type of grafting to use. Can be 'rmsprop_normalized' (default), 'rmsprop', 'adagrad', 'adagrad_normalized', 'sgd' or 'sqrt_n'" |
|
}, |
|
) |
|
nesterov: bool = field( |
|
default=False, |
|
metadata={"help": "Use Nesterov momentum for Distributed Shampoo."}, |
|
) |
|
optim_quantized: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to quantize optimizer (only supported with Distributed Shampoo)." |
|
}, |
|
) |
|
shard_shampoo_across: str = field( |
|
default="dp", |
|
metadata={ |
|
"help": "Whether to shard the optimizer across data devices (dp), model devices (mp) or both (2d)." |
|
}, |
|
) |
|
|
|
num_train_epochs: int = field( |
|
default=3, metadata={"help": "Total number of training epochs to perform."} |
|
) |
|
|
|
warmup_steps: int = field( |
|
default=0, metadata={"help": "Linear warmup over warmup_steps."} |
|
) |
|
lr_decay: str = field( |
|
default=None, |
|
metadata={ |
|
"help": "Decay to be used in the learning rate scheduler. Can be None (default), linear or exponential." |
|
}, |
|
) |
|
lr_transition_steps: int = field( |
|
default=None, |
|
metadata={ |
|
"help": "Number of transition steps associated with learning rate decay when using exponential decay." |
|
}, |
|
) |
|
lr_decay_rate: float = field( |
|
default=None, |
|
metadata={ |
|
"help": "Decay rate associated with learning rate when using exponential decay." |
|
}, |
|
) |
|
lr_staircase: bool = field( |
|
default=False, |
|
metadata={ |
|
"help": "Whether to use staircase or continuous learning rate when using exponential decay." |
|
}, |
|
) |
|
lr_offset: int = field( |
|
default=0, |
|
metadata={"help": "Number of steps to offset learning rate and keep it at 0."}, |
|
) |
|
logging_steps: int = field( |
|
default=40, metadata={"help": "Log every X updates steps."} |
|
) |
|
eval_steps: int = field( |
|
default=400, metadata={"help": "Run an evaluation every X steps."} |
|
) |
|
save_steps: int = field( |
|
default=4000, metadata={"help": "Save checkpoint every X updates steps."} |
|
) |
|
log_model: bool = field( |
|
default=False, |
|
metadata={"help": "Log model to wandb at `save_steps` frequency."}, |
|
) |
|
log_norm_steps: int = field( |
|
default=True, |
|
metadata={"help": "Log parameters and gradients norm at this frequency."}, |
|
) |
|
log_histogram_steps: int = field( |
|
default=False, |
|
metadata={ |
|
"help": "Log parameters and gradients histograms at this frequency. Slows down training." |
|
}, |
|
) |
|
|
|
seed_model: int = field( |
|
default=42, |
|
metadata={ |
|
"help": "Random seed for the model that will be set at the beginning of training." |
|
}, |
|
) |
|
|
|
wandb_entity: Optional[str] = field( |
|
default=None, |
|
metadata={"help": "The wandb entity to use (for teams)."}, |
|
) |
|
wandb_project: str = field( |
|
default="dalle-mini", |
|
metadata={"help": "The name of the wandb project."}, |
|
) |
|
wandb_job_type: str = field( |
|
default="Seq2Seq", |
|
metadata={"help": "The name of the wandb job type."}, |
|
) |
|
|
|
assert_TPU_available: bool = field( |
|
default=False, |
|
metadata={"help": "Verify that TPU is not in use."}, |
|
) |
|
|
|
use_vmap_trick: bool = field( |
|
default=True, |
|
metadata={"help": "Verify that TPU is not in use."}, |
|
) |
|
|
|
mp_devices: Optional[int] = field( |
|
default=1, |
|
metadata={ |
|
"help": "Number of devices required for model parallelism. The other dimension of available devices is used for data parallelism." |
|
}, |
|
) |
|
|
|
dp_devices: int = field(init=False) |
|
|
|
def __post_init__(self): |
|
if self.assert_TPU_available: |
|
assert ( |
|
jax.local_device_count() == 8 |
|
), "TPUs in use, please check running processes" |
|
if self.output_dir.startswith("gs://"): |
|
assert ( |
|
storage is not None |
|
), 'Could not find google.storage. Install with "pip install google-cloud-storage"' |
|
assert self.optim in [ |
|
"distributed_shampoo", |
|
"adam", |
|
"adafactor", |
|
], f"Selected optimizer not supported: {self.optim}" |
|
if self.optim == "adafactor" and self.weight_decay == 0: |
|
self.weight_decay = None |
|
assert self.graft_type in [ |
|
"rmsprop_normalized", |
|
"rmsprop", |
|
"adagrad", |
|
"adagrad_normalized", |
|
"sgd", |
|
"sqrt_n", |
|
], f"Selected graft type not supported: {self.graft_type}" |
|
assert self.lr_decay in [ |
|
None, |
|
"linear", |
|
"exponential", |
|
], f"Selected learning rate decay not supported: {self.lr_decay}" |
|
if self.per_device_eval_batch_size is None: |
|
self.per_device_eval_batch_size = self.per_device_train_batch_size |
|
if self.log_norm_steps is True: |
|
self.log_norm_steps = self.logging_steps |
|
if not self.do_train: |
|
self.num_train_epochs = 1 |
|
if ( |
|
os.path.exists(self.output_dir) |
|
and os.listdir(self.output_dir) |
|
and self.do_train |
|
and not self.overwrite_output_dir |
|
): |
|
raise ValueError( |
|
f"Output directory ({self.output_dir}) already exists and is not empty." |
|
"Use --overwrite_output_dir to overcome." |
|
) |
|
assert self.shard_shampoo_across in [ |
|
"dp", |
|
"mp", |
|
"2d", |
|
], f"Shard shampoo across {self.shard_shampoo_across} not supported." |
|
assert ( |
|
self.mp_devices > 0 |
|
), f"Number of devices for model parallelism must be > 0" |
|
assert ( |
|
jax.device_count() % self.mp_devices == 0 |
|
), f"Number of available devices ({jax.device_count()} must be divisible by number of devices used for model parallelism ({self.mp_devices})." |
|
self.dp_devices = jax.device_count() // self.mp_devices |
|
|
|
|
|
def split_params(data): |
|
"""Split params between scanned and non-scanned""" |
|
flat = traverse_util.flatten_dict(unfreeze(data)) |
|
split = {"standard": {}, "scanned_encoder": {}, "scanned_decoder": {}} |
|
for k, v in flat.items(): |
|
if "FlaxBartEncoderLayers" in k: |
|
split["scanned_encoder"][k] = v |
|
elif "FlaxBartDecoderLayers" in k: |
|
split["scanned_decoder"][k] = v |
|
else: |
|
split["standard"][k] = v |
|
|
|
split = {k: v for k, v in split.items() if v} |
|
for k, v in split.items(): |
|
split[k] = freeze(traverse_util.unflatten_dict(v)) |
|
return split |
|
|
|
|
|
def unsplit_params(data): |
|
flat = {} |
|
for k in ["standard", "scanned_encoder", "scanned_decoder"]: |
|
if k in data: |
|
flat.update(traverse_util.flatten_dict(unfreeze(data[k]))) |
|
return freeze(traverse_util.unflatten_dict(flat)) |
|
|
|
|
|
class TrainState(struct.PyTreeNode): |
|
step: int |
|
params: core.FrozenDict[str, Any] |
|
opt_state: optax.OptState |
|
apply_fn: Callable = struct.field(pytree_node=False) |
|
tx: optax.GradientTransformation = struct.field(pytree_node=False) |
|
dropout_rng: jnp.ndarray = None |
|
epoch: int = 0 |
|
train_time: float = 0.0 |
|
train_samples: int = 0 |
|
|
|
def apply_gradients(self, *, grads, **kwargs): |
|
grads = split_params(grads) |
|
params = split_params(self.params) |
|
opt_state = {} |
|
|
|
for k, param in params.items(): |
|
update_fn = self.tx[k].update |
|
if "scanned" in k: |
|
update_fn = jax.vmap(update_fn, in_axes=(0, 0, 0), out_axes=(0, 0)) |
|
updates, new_opt_state = update_fn(grads[k], self.opt_state[k], param) |
|
params[k] = optax.apply_updates(param, updates) |
|
opt_state[k] = new_opt_state |
|
params = unsplit_params(params) |
|
|
|
return self.replace( |
|
step=self.step + 1, |
|
params=params, |
|
opt_state=freeze(opt_state), |
|
**kwargs, |
|
) |
|
|
|
@classmethod |
|
def create(cls, *, apply_fn, params, tx, **kwargs): |
|
opt_state = {} |
|
for k, p in split_params(params).items(): |
|
init_fn = tx[k].init |
|
if "scanned" in k: |
|
init_fn = jax.vmap(init_fn) |
|
opt_state[k] = init_fn(p) |
|
return cls( |
|
step=0, |
|
apply_fn=apply_fn, |
|
params=params, |
|
tx=tx, |
|
opt_state=freeze(opt_state), |
|
**kwargs, |
|
) |
|
|
|
|
|
def main(): |
|
|
|
parser = HfArgumentParser( |
|
(ModelArguments, DataTrainingArguments, TrainingArguments) |
|
) |
|
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): |
|
|
|
|
|
model_args, data_args, training_args = parser.parse_json_file( |
|
json_file=os.path.abspath(sys.argv[1]) |
|
) |
|
else: |
|
model_args, data_args, training_args = parser.parse_args_into_dataclasses() |
|
|
|
|
|
if training_args.mp_devices > jax.local_device_count(): |
|
assert ( |
|
data_args.seed_dataset is not None |
|
), "Seed dataset must be provided when model is split over multiple hosts" |
|
|
|
|
|
logging.basicConfig( |
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", |
|
datefmt="%m/%d/%Y %H:%M:%S", |
|
level=logging.INFO, |
|
) |
|
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR) |
|
if jax.process_index() == 0: |
|
datasets.utils.logging.set_verbosity_warning() |
|
transformers.utils.logging.set_verbosity_info() |
|
else: |
|
datasets.utils.logging.set_verbosity_error() |
|
transformers.utils.logging.set_verbosity_error() |
|
|
|
|
|
logger.info(f"Training/evaluation parameters {training_args}") |
|
|
|
|
|
dataset = Dataset( |
|
**asdict(data_args), |
|
do_train=training_args.do_train, |
|
do_eval=training_args.do_eval, |
|
) |
|
|
|
logger.info(f"Local TPUs: {jax.local_device_count()}") |
|
logger.info(f"Global TPUs: {jax.device_count()}") |
|
|
|
|
|
if jax.process_index() == 0: |
|
wandb.init( |
|
entity=training_args.wandb_entity, |
|
project=training_args.wandb_project, |
|
job_type=training_args.wandb_job_type, |
|
config=parser.parse_args(), |
|
) |
|
|
|
|
|
config_args = { |
|
k: getattr(model_args, k) |
|
for k in ["dropout", "activation_dropout", "attention_dropout"] |
|
if getattr(model_args, k) is not None |
|
} |
|
if model_args.config_name: |
|
config = DalleBartConfig.from_pretrained(model_args.config_name) |
|
config.gradient_checkpointing = training_args.gradient_checkpointing |
|
for k, v in config_args.items(): |
|
setattr(config, k, v) |
|
else: |
|
config = None |
|
|
|
|
|
if model_args.model_name_or_path: |
|
model, params = DalleBart.from_pretrained( |
|
model_args.model_name_or_path, |
|
config=config, |
|
seed=training_args.seed_model, |
|
dtype=getattr(jnp, model_args.dtype), |
|
_do_init=False, |
|
gradient_checkpointing=training_args.gradient_checkpointing, |
|
**config_args, |
|
) |
|
else: |
|
model = DalleBart( |
|
config, |
|
seed=training_args.seed_model, |
|
dtype=getattr(jnp, model_args.dtype), |
|
_do_init=False, |
|
) |
|
params = None |
|
params_shape = model.params_shape_tree |
|
|
|
|
|
model_metadata = model_args.get_metadata() |
|
|
|
|
|
param_spec = set_partitions(params_shape, model.config.use_scan) |
|
params_shape = freeze(params_shape) |
|
if params is not None: |
|
params = freeze(params) |
|
|
|
|
|
tokenizer = DalleBartTokenizer.from_pretrained( |
|
model_args.tokenizer_name, use_fast=True |
|
) |
|
|
|
|
|
|
|
dataset.preprocess(tokenizer=tokenizer, config=model.config) |
|
|
|
|
|
dropout_rng = jax.random.PRNGKey(training_args.seed_model) |
|
|
|
|
|
num_epochs = training_args.num_train_epochs |
|
|
|
batch_size_per_node_per_grad_step = ( |
|
training_args.per_device_train_batch_size |
|
* jax.local_device_count() |
|
// training_args.mp_devices |
|
) |
|
batch_size_per_node = ( |
|
batch_size_per_node_per_grad_step * training_args.gradient_accumulation_steps |
|
) |
|
batch_size_per_step = batch_size_per_node * jax.process_count() |
|
eval_batch_size_per_node = ( |
|
training_args.per_device_eval_batch_size |
|
* jax.local_device_count() |
|
// training_args.mp_devices |
|
) |
|
eval_batch_size_per_step = eval_batch_size_per_node * jax.process_count() |
|
len_train_dataset, len_eval_dataset = dataset.length |
|
steps_per_epoch = ( |
|
len_train_dataset // batch_size_per_node |
|
if len_train_dataset is not None |
|
else None |
|
) |
|
num_train_steps = ( |
|
steps_per_epoch * num_epochs if steps_per_epoch is not None else None |
|
) |
|
num_params = model.num_params(params_shape) |
|
|
|
logger.info("***** Running training *****") |
|
logger.info(f" Num examples = {len_train_dataset}") |
|
logger.info(f" Num Epochs = {num_epochs}") |
|
logger.info( |
|
f" Batch size per dp device = {training_args.per_device_train_batch_size}" |
|
) |
|
logger.info(f" Number of devices = {jax.device_count()}") |
|
logger.info( |
|
f" Gradient accumulation steps = {training_args.gradient_accumulation_steps}" |
|
) |
|
logger.info(f" Batch size per update = {batch_size_per_step}") |
|
logger.info(f" Model parameters = {num_params:,}") |
|
|
|
|
|
if jax.process_index() == 0: |
|
|
|
wandb.define_metric("*", step_metric="train/step") |
|
|
|
|
|
wandb.config.update( |
|
{ |
|
"len_train_dataset": len_train_dataset, |
|
"len_eval_dataset": len_eval_dataset, |
|
"batch_size_per_step": batch_size_per_step, |
|
"num_params": num_params, |
|
"model_config": model.config.to_dict(), |
|
"num_devices": jax.device_count(), |
|
"versions": { |
|
"jax": jax.__version__, |
|
"jaxlib": jaxlib.__version__, |
|
"flax": flax.__version__, |
|
"transformers": transformers.__version__, |
|
"datasets": datasets.__version__, |
|
"wandb": wandb.__version__, |
|
"dalle_mini": dalle_mini.__version__, |
|
}, |
|
} |
|
) |
|
|
|
|
|
def create_learning_rate_fn() -> Callable[[int], jnp.array]: |
|
"""Create the learning rate function.""" |
|
warmup_fn = optax.linear_schedule( |
|
init_value=0.0, |
|
end_value=training_args.learning_rate, |
|
transition_steps=training_args.warmup_steps + 1, |
|
) |
|
last_boundary = training_args.warmup_steps |
|
|
|
if training_args.lr_offset: |
|
warmup_fn = optax.join_schedules( |
|
schedules=[optax.constant_schedule(0.0), warmup_fn], |
|
boundaries=[training_args.lr_offset], |
|
) |
|
last_boundary += training_args.lr_offset |
|
if training_args.lr_decay is None: |
|
return warmup_fn |
|
elif training_args.lr_decay == "linear": |
|
assert ( |
|
num_train_steps is not None |
|
), "linear decay requires knowing the dataset length" |
|
decay_fn = optax.linear_schedule( |
|
init_value=training_args.learning_rate, |
|
end_value=0, |
|
transition_steps=num_train_steps - training_args.warmup_steps, |
|
) |
|
elif training_args.lr_decay == "exponential": |
|
decay_fn = optax.exponential_decay( |
|
init_value=training_args.learning_rate, |
|
transition_steps=training_args.lr_transition_steps, |
|
decay_rate=training_args.lr_decay_rate, |
|
staircase=training_args.lr_staircase, |
|
) |
|
schedule_fn = optax.join_schedules( |
|
schedules=[warmup_fn, decay_fn], |
|
boundaries=[last_boundary], |
|
) |
|
return schedule_fn |
|
|
|
learning_rate_fn = create_learning_rate_fn() |
|
|
|
|
|
if training_args.optim == "distributed_shampoo": |
|
|
|
graft_type = { |
|
"sgd": GraftingType.SGD, |
|
"adagrad": GraftingType.ADAGRAD, |
|
"rmsprop": GraftingType.RMSPROP, |
|
"rmsprop_normalized": GraftingType.RMSPROP_NORMALIZED, |
|
"sqrt_n": GraftingType.SQRT_N, |
|
"adagrad_normalized": GraftingType.ADAGRAD_NORMALIZED, |
|
}[training_args.graft_type] |
|
statistics_partition_spec = ( |
|
PartitionSpec(None, training_args.shard_shampoo_across, None) |
|
if training_args.shard_shampoo_across != "2d" |
|
else PartitionSpec(None, "dp", "mp") |
|
) |
|
opt = distributed_shampoo( |
|
learning_rate_fn, |
|
block_size=training_args.block_size, |
|
beta1=training_args.beta1, |
|
beta2=training_args.beta2, |
|
diagonal_epsilon=1e-10, |
|
matrix_epsilon=1e-6, |
|
weight_decay=training_args.weight_decay, |
|
start_preconditioning_step=max( |
|
training_args.preconditioning_compute_steps + 1, 101 |
|
), |
|
preconditioning_compute_steps=training_args.preconditioning_compute_steps, |
|
statistics_compute_steps=1, |
|
best_effort_shape_interpretation=True, |
|
graft_type=graft_type, |
|
nesterov=training_args.nesterov, |
|
exponent_override=0, |
|
statistics_partition_spec=statistics_partition_spec, |
|
preconditioner_partition_spec=PartitionSpec( |
|
training_args.shard_shampoo_across, None, None |
|
) |
|
if training_args.shard_shampoo_across != "2d" |
|
else PartitionSpec( |
|
"mp" if training_args.mp_devices > training_args.dp_devices else "dp", |
|
None, |
|
None, |
|
), |
|
num_devices_for_pjit=training_args.dp_devices, |
|
shard_optimizer_states=True, |
|
inverse_failure_threshold=0.1, |
|
moving_average_for_momentum=True, |
|
skip_preconditioning_dim_size_gt=training_args.skip_preconditioning_dim_size_gt, |
|
clip_by_scaled_gradient_norm=None, |
|
precision=jax.lax.Precision.HIGHEST, |
|
best_effort_memory_usage_reduction=training_args.optim_quantized, |
|
) |
|
|
|
update_fn = opt.update |
|
|
|
optimizer = {} |
|
opt_fn = {} |
|
for k, p in split_params(params_shape).items(): |
|
if "scanned" in k: |
|
p = jax.eval_shape(lambda x: jax.tree_map(lambda y: y[0], x), p) |
|
optimizer[k] = opt.init(p) |
|
opt_fn[k] = NamedTuple("opt_fn", pspec_fn=Any, shape_and_dtype_fn=Any)( |
|
optimizer[k].pspec_fn, optimizer[k].shape_and_dtype_fn |
|
) |
|
optimizer[k] = optax.GradientTransformation(optimizer[k].init_fn, update_fn) |
|
|
|
elif training_args.optim == "adam": |
|
optimizer = optax.adamw( |
|
learning_rate=learning_rate_fn, |
|
b1=training_args.beta1, |
|
b2=training_args.beta2, |
|
eps=training_args.adam_epsilon, |
|
weight_decay=training_args.weight_decay, |
|
) |
|
optimizer = {k: optimizer for k in split_params(params_shape)} |
|
|
|
elif training_args.optim == "adafactor": |
|
|
|
|
|
optimizer = optax.adafactor( |
|
learning_rate=learning_rate_fn, |
|
clipping_threshold=training_args.max_grad_norm, |
|
weight_decay_rate=training_args.weight_decay, |
|
) |
|
optimizer = {k: optimizer for k in split_params(params_shape)} |
|
|
|
|
|
def get_opt_state_spec_and_shape(): |
|
|
|
opt_state_shape = {} |
|
for k, p in split_params(params_shape).items(): |
|
if "scanned" not in k: |
|
opt_state_shape[k] = jax.eval_shape(optimizer[k].init, p) |
|
else: |
|
opt_state_shape[k] = jax.eval_shape(jax.vmap(optimizer[k].init), p) |
|
|
|
if training_args.optim == "adafactor": |
|
|
|
opt_state_spec = {k: None for k in split_params(params_shape)} |
|
|
|
elif training_args.optim in ["adam", "distributed_shampoo"]: |
|
|
|
def _opt_state_spec_per_leaf(x, spec): |
|
if isinstance(x, FrozenDict): |
|
|
|
return spec |
|
else: |
|
|
|
return None |
|
|
|
split_spec = split_params(set_partitions(params_shape, False)) |
|
opt_state_spec = {} |
|
for k, p in split_params(params_shape).items(): |
|
if "scanned" in k: |
|
p = jax.eval_shape(lambda x: jax.tree_map(lambda y: y[0], x), p) |
|
if training_args.optim == "adam": |
|
opt_state_spec[k] = jax.tree_map( |
|
_opt_state_spec_per_leaf, |
|
opt_state_shape[k], |
|
split_spec[k], |
|
|
|
is_leaf=lambda x: isinstance(x, (FrozenDict, optax.EmptyState)), |
|
) |
|
elif training_args.optim == "distributed_shampoo": |
|
opt_state_spec[k] = opt_fn[k].pspec_fn( |
|
p, |
|
split_spec[k], |
|
statistics_partition_spec, |
|
) |
|
|
|
if "scanned" in k: |
|
opt_state_spec[k] = jax.tree_map( |
|
lambda x: PartitionSpec(*(None,) + x) |
|
if x is not None |
|
else None, |
|
opt_state_spec[k], |
|
is_leaf=lambda x: isinstance(x, PartitionSpec), |
|
) |
|
|
|
else: |
|
raise NotImplementedError |
|
return freeze(opt_state_spec), freeze(opt_state_shape) |
|
|
|
opt_state_spec, opt_state_shape = get_opt_state_spec_and_shape() |
|
|
|
|
|
mesh_shape = (training_args.dp_devices, training_args.mp_devices) |
|
devices = np.asarray(jax.devices()).reshape(*mesh_shape) |
|
mesh = maps.Mesh(devices, ("dp", "mp")) |
|
logger.info(f" Mesh shape: {mesh_shape}") |
|
|
|
|
|
state_spec = TrainState( |
|
params=param_spec, |
|
opt_state=opt_state_spec, |
|
dropout_rng=None, |
|
step=None, |
|
epoch=None, |
|
train_time=None, |
|
train_samples=None, |
|
apply_fn=model.__call__, |
|
tx=optimizer, |
|
) |
|
|
|
|
|
def maybe_init_params(params): |
|
if params is not None: |
|
|
|
return params |
|
else: |
|
|
|
return model.init_weights(model.key, model.input_shape) |
|
|
|
with mesh: |
|
logger.info(" Creating state") |
|
|
|
|
|
attr_state = {} |
|
keys = ["train_time", "train_samples"] |
|
if model_args.restore_state: |
|
keys += ["step", "epoch"] |
|
attr_state = {k: v for k, v in model_metadata.items() if k in keys} |
|
|
|
if not model_args.restore_state: |
|
|
|
def init_state(params): |
|
return TrainState.create( |
|
apply_fn=model.__call__, |
|
tx=optimizer, |
|
params=maybe_init_params(params), |
|
dropout_rng=dropout_rng, |
|
**attr_state, |
|
) |
|
|
|
state = pjit( |
|
init_state, |
|
in_axis_resources=(param_spec,) |
|
if model_args.model_name_or_path |
|
else None, |
|
out_axis_resources=state_spec, |
|
donate_argnums=(0,), |
|
)(params) |
|
|
|
else: |
|
|
|
opt_state = from_bytes(opt_state_shape, model_args.get_opt_state()) |
|
|
|
def restore_state(params, opt_state): |
|
return TrainState( |
|
apply_fn=model.__call__, |
|
tx=optimizer, |
|
params=params, |
|
opt_state=opt_state, |
|
dropout_rng=dropout_rng, |
|
**attr_state, |
|
) |
|
|
|
state = pjit( |
|
restore_state, |
|
in_axis_resources=( |
|
param_spec, |
|
opt_state_spec, |
|
), |
|
out_axis_resources=state_spec, |
|
donate_argnums=(0, 1), |
|
)(params, opt_state) |
|
|
|
|
|
del opt_state |
|
|
|
|
|
del params, opt_state_spec, opt_state_shape |
|
|
|
|
|
batch_spec = PartitionSpec("dp") |
|
grad_batch_spec = PartitionSpec(None, "dp") |
|
|
|
|
|
def loss_fn(logits, labels): |
|
loss = optax.softmax_cross_entropy(logits, onehot(labels, logits.shape[-1])) |
|
loss = loss.mean() |
|
return loss |
|
|
|
|
|
|
|
use_vmap_trick = training_args.use_vmap_trick |
|
|
|
|
|
if use_vmap_trick: |
|
grad_param_spec = jax.tree_map( |
|
lambda x: PartitionSpec(*("dp",) + (x if x is not None else (None,))), |
|
param_spec, |
|
) |
|
|
|
|
|
def train_step(state, batch, train_time): |
|
|
|
|
|
def get_minibatch(batch, grad_idx): |
|
return jax.tree_map( |
|
lambda x: jax.lax.dynamic_index_in_dim(x, grad_idx, keepdims=False), |
|
batch, |
|
) |
|
|
|
def compute_loss(params, minibatch, dropout_rng): |
|
|
|
minibatch, labels = minibatch.pop("labels") |
|
logits = state.apply_fn( |
|
**minibatch, params=params, dropout_rng=dropout_rng, train=True |
|
)[0] |
|
return loss_fn(logits, labels) |
|
|
|
grad_fn = jax.value_and_grad(compute_loss) |
|
|
|
def loss_and_grad(grad_idx, dropout_rng): |
|
|
|
minibatch = ( |
|
get_minibatch(batch, grad_idx) if grad_idx is not None else batch |
|
) |
|
|
|
minibatch = with_sharding_constraint(minibatch, batch_spec) |
|
|
|
dropout_rng, _ = jax.random.split(dropout_rng) |
|
|
|
if use_vmap_trick: |
|
|
|
loss, grads = jax.vmap( |
|
grad_fn, in_axes=(None, 0, None), out_axes=(0, 0) |
|
)(state.params, minibatch, dropout_rng) |
|
|
|
loss = with_sharding_constraint(loss, batch_spec) |
|
grads = with_sharding_constraint(grads, grad_param_spec) |
|
|
|
|
|
loss, grads = jax.tree_map(lambda x: jnp.mean(x, axis=0), (loss, grads)) |
|
else: |
|
|
|
loss, grads = grad_fn(state.params, minibatch, dropout_rng) |
|
|
|
grads = with_sharding_constraint(grads, param_spec) |
|
|
|
return loss, grads, dropout_rng |
|
|
|
if training_args.gradient_accumulation_steps == 1: |
|
loss, grads, dropout_rng = loss_and_grad(None, state.dropout_rng) |
|
else: |
|
|
|
init_minibatch_step = ( |
|
0.0, |
|
with_sharding_constraint( |
|
jax.tree_map(jnp.zeros_like, state.params), param_spec |
|
), |
|
state.dropout_rng, |
|
) |
|
|
|
|
|
def cumul_minibatch_step(grad_idx, cumul_loss_grad_dropout): |
|
cumul_loss, cumul_grads, dropout_rng = cumul_loss_grad_dropout |
|
loss, grads, dropout_rng = loss_and_grad(grad_idx, dropout_rng) |
|
cumul_loss, cumul_grads = jax.tree_map( |
|
jnp.add, (cumul_loss, cumul_grads), (loss, grads) |
|
) |
|
cumul_grads = with_sharding_constraint(cumul_grads, param_spec) |
|
return cumul_loss, cumul_grads, dropout_rng |
|
|
|
|
|
loss, grads, dropout_rng = jax.lax.fori_loop( |
|
0, |
|
training_args.gradient_accumulation_steps, |
|
cumul_minibatch_step, |
|
init_minibatch_step, |
|
) |
|
grads = with_sharding_constraint(grads, param_spec) |
|
|
|
loss, grads = jax.tree_map( |
|
lambda x: x / training_args.gradient_accumulation_steps, (loss, grads) |
|
) |
|
|
|
grads = with_sharding_constraint(grads, param_spec) |
|
|
|
|
|
state = state.apply_gradients( |
|
grads=grads, |
|
dropout_rng=dropout_rng, |
|
train_time=train_time, |
|
train_samples=state.train_samples + batch_size_per_step, |
|
) |
|
|
|
metrics = { |
|
"loss": loss, |
|
"learning_rate": learning_rate_fn(state.step), |
|
} |
|
|
|
def maybe_fn(fn, val, zeros, freq): |
|
"""Call fn only if it is a logging step""" |
|
return jax.lax.cond( |
|
state.step % freq == 0, |
|
fn, |
|
lambda _: zeros, |
|
val, |
|
) |
|
|
|
if training_args.log_norm_steps: |
|
zeros_norm = jax.tree_map(lambda _: jnp.float32(0), state.params) |
|
|
|
def norm(val): |
|
return jax.tree_map(lambda x: jnp.linalg.norm(x), val) |
|
|
|
gradients_norm = maybe_fn( |
|
norm, grads, zeros_norm, training_args.log_norm_steps |
|
) |
|
params_norm = maybe_fn( |
|
norm, state.params, zeros_norm, training_args.log_norm_steps |
|
) |
|
|
|
metrics.update( |
|
{ |
|
"gradients_norm": gradients_norm, |
|
"params_norm": params_norm, |
|
} |
|
) |
|
|
|
if training_args.log_histogram_steps: |
|
zeros_hist = jax.tree_map( |
|
lambda _: jnp.histogram(jnp.zeros(1), density=True), state.params |
|
) |
|
|
|
def histogram(val): |
|
return jax.tree_map(lambda x: jnp.histogram(x, density=True), val) |
|
|
|
gradients_hist = maybe_fn( |
|
histogram, grads, zeros_hist, training_args.log_histogram_steps |
|
) |
|
params_hist = maybe_fn( |
|
histogram, state.params, zeros_hist, training_args.log_histogram_steps |
|
) |
|
|
|
metrics.update( |
|
{ |
|
"params_hist": params_hist, |
|
"gradients_hist": gradients_hist, |
|
} |
|
) |
|
|
|
return state, metrics |
|
|
|
|
|
def eval_step(state, batch): |
|
def compute_eval_loss(batch): |
|
batch, labels = batch.pop("labels") |
|
logits = model(**batch, params=state.params, train=False)[0] |
|
return loss_fn(logits, labels) |
|
|
|
if use_vmap_trick: |
|
loss = jax.vmap(compute_eval_loss)(batch) |
|
|
|
loss = with_sharding_constraint(loss, batch_spec) |
|
|
|
loss = jnp.mean(loss) |
|
else: |
|
loss = compute_eval_loss(batch) |
|
|
|
return loss |
|
|
|
|
|
p_train_step = pjit( |
|
train_step, |
|
in_axis_resources=( |
|
state_spec, |
|
grad_batch_spec |
|
if training_args.gradient_accumulation_steps > 1 |
|
else batch_spec, |
|
None, |
|
), |
|
out_axis_resources=(state_spec, None), |
|
donate_argnums=(0,), |
|
) |
|
p_eval_step = pjit( |
|
eval_step, |
|
in_axis_resources=(state_spec, batch_spec), |
|
out_axis_resources=None, |
|
) |
|
|
|
|
|
class MetricsLogger: |
|
def __init__(self, step): |
|
|
|
self.state_dict = {} |
|
|
|
self.step = step |
|
self.time = time.perf_counter() |
|
self.offset_time = 0.0 |
|
|
|
def update_state_metrics(self, state): |
|
"""Update internal state metrics (logged at each call to be used as x-axis)""" |
|
self.state_dict = { |
|
f'train/{k.split("_")[-1]}': state[k] |
|
for k in ["step", "epoch", "train_time", "train_samples"] |
|
} |
|
|
|
new_step = int(state["step"]) |
|
new_time = time.perf_counter() |
|
if new_step > self.step: |
|
|
|
delta_time = new_time - self.time - self.offset_time |
|
self.offset_time = 0 |
|
time_per_step = delta_time / (new_step - self.step) |
|
self.step = new_step |
|
self.time = new_time |
|
self.log_time("train_per_step", time_per_step, offset=False) |
|
self.log_time("train_per_log", delta_time, offset=False) |
|
|
|
def log_time(self, key, duration, offset=True): |
|
if jax.process_index() == 0: |
|
wandb.log({f"time/{key}": duration, **self.state_dict}) |
|
if offset: |
|
self.offset_time += duration |
|
|
|
def log(self, metrics, prefix=None): |
|
if jax.process_index() == 0: |
|
log_metrics = {} |
|
for k, v in metrics.items(): |
|
if "_norm" in k: |
|
if self.step % training_args.log_norm_steps == 0: |
|
log_metrics[f"{k}/"] = unfreeze(v) |
|
elif "_hist" in k: |
|
if self.step % training_args.log_histogram_steps == 0: |
|
v = jax.tree_map(lambda x: jax.device_get(x), unfreeze(v)) |
|
v = jax.tree_map( |
|
lambda x: wandb.Histogram(np_histogram=x), |
|
v, |
|
is_leaf=lambda x: isinstance(x, tuple), |
|
) |
|
log_metrics[f"{k}/"] = v |
|
else: |
|
if prefix is not None: |
|
k = f"{prefix}/{k}" |
|
log_metrics[k] = v |
|
wandb.log({**log_metrics, **self.state_dict}) |
|
|
|
|
|
local_state = { |
|
k: jax.device_get(getattr(state, k)).item() |
|
for k in ["step", "epoch", "train_time", "train_samples"] |
|
} |
|
|
|
start_time = time.perf_counter() - local_state["train_time"] |
|
train_metrics = None |
|
evaluation_ran = False |
|
save_model_ran = False |
|
metrics_logger = MetricsLogger(local_state["step"]) |
|
epochs = tqdm( |
|
range(local_state["epoch"], num_epochs), |
|
desc=f"Epoch ... (1/{num_epochs})", |
|
position=0, |
|
disable=jax.process_index() > 0, |
|
) |
|
|
|
def run_evaluation(): |
|
|
|
if training_args.do_eval: |
|
start_eval_time = time.perf_counter() |
|
eval_loader = dataset.dataloader( |
|
"eval", |
|
eval_batch_size_per_step |
|
* max(1, training_args.mp_devices // jax.local_device_count()), |
|
) |
|
eval_steps = ( |
|
len_eval_dataset // eval_batch_size_per_step |
|
if len_eval_dataset is not None |
|
else None |
|
) |
|
eval_loss = [] |
|
for batch in tqdm( |
|
eval_loader, |
|
desc="Evaluating...", |
|
position=2, |
|
leave=False, |
|
total=eval_steps, |
|
disable=jax.process_index() > 0, |
|
): |
|
|
|
batch = jax.tree_map( |
|
lambda x: x.reshape( |
|
(jax.process_count(), eval_batch_size_per_node) + x.shape[1:] |
|
), |
|
batch, |
|
) |
|
batch = jax.tree_map(lambda x: x[jax.process_index()], batch) |
|
|
|
|
|
if use_vmap_trick: |
|
bs_shape = ( |
|
jax.local_device_count() // training_args.mp_devices, |
|
training_args.per_device_eval_batch_size, |
|
) |
|
batch = jax.tree_map( |
|
lambda x: x.reshape(bs_shape + x.shape[1:]), batch |
|
) |
|
|
|
|
|
batch = freeze(batch) |
|
|
|
eval_loss.append(p_eval_step(state, batch)) |
|
|
|
|
|
eval_loss = jnp.stack(eval_loss) |
|
eval_loss = jnp.mean(eval_loss) |
|
eval_metrics = {"loss": eval_loss} |
|
|
|
|
|
metrics_logger.log(eval_metrics, prefix="eval") |
|
metrics_logger.log_time("eval", time.perf_counter() - start_eval_time) |
|
|
|
|
|
desc = f"Epoch... ({epoch + 1}/{num_epochs} | Eval Loss: {eval_metrics['loss']})" |
|
epochs.write(desc) |
|
epochs.desc = desc |
|
|
|
return eval_metrics |
|
|
|
def run_save_model(state, eval_metrics=None): |
|
if jax.process_index() == 0: |
|
|
|
start_save_time = time.perf_counter() |
|
output_dir = training_args.output_dir |
|
use_bucket = output_dir.startswith("gs://") |
|
if use_bucket: |
|
bucket_path = Path(output_dir[5:]) / wandb.run.id / f"step_{state.step}" |
|
bucket, dir_path = str(bucket_path).split("/", 1) |
|
tmp_dir = tempfile.TemporaryDirectory() |
|
output_dir = tmp_dir.name |
|
|
|
|
|
params = jax.device_get(state.params) |
|
model.save_pretrained( |
|
output_dir, |
|
params=params, |
|
) |
|
|
|
|
|
tokenizer.save_pretrained(output_dir) |
|
|
|
|
|
if use_bucket: |
|
client = storage.Client() |
|
bucket = client.bucket(bucket) |
|
for filename in Path(output_dir).glob("*"): |
|
blob_name = str(Path(dir_path) / "model" / filename.name) |
|
blob = bucket.blob(blob_name) |
|
blob.upload_from_filename(str(filename)) |
|
tmp_dir.cleanup() |
|
|
|
|
|
opt_state = jax.device_get(state.opt_state) |
|
if use_bucket: |
|
blob_name = str(Path(dir_path) / "state" / "opt_state.msgpack") |
|
blob = bucket.blob(blob_name) |
|
blob.upload_from_file(io.BytesIO(to_bytes(opt_state))) |
|
else: |
|
with (Path(output_dir) / "opt_state.msgpack").open("wb") as f: |
|
f.write(to_bytes(opt_state)) |
|
|
|
|
|
if training_args.log_model: |
|
|
|
c = wandb.wandb_sdk.wandb_artifacts.get_artifacts_cache() |
|
c.cleanup(wandb.util.from_human_size("20GB")) |
|
|
|
metadata = { |
|
k: jax.device_get(getattr(state, k)).item() |
|
for k in ["step", "epoch", "train_time", "train_samples"] |
|
} |
|
metadata["num_params"] = num_params |
|
if eval_metrics is not None: |
|
metadata["eval"] = eval_metrics |
|
|
|
|
|
if use_bucket: |
|
metadata["bucket_path"] = f"gs://{bucket_path}/model" |
|
artifact = wandb.Artifact( |
|
name=f"model-{wandb.run.id}", |
|
type="DalleBart_model", |
|
metadata=metadata, |
|
) |
|
if use_bucket: |
|
artifact.add_reference(metadata["bucket_path"]) |
|
else: |
|
for filename in [ |
|
"config.json", |
|
"flax_model.msgpack", |
|
"merges.txt", |
|
"special_tokens_map.json", |
|
"tokenizer.json", |
|
"tokenizer_config.json", |
|
"vocab.json", |
|
]: |
|
artifact.add_file( |
|
f"{Path(training_args.output_dir) / filename}" |
|
) |
|
wandb.run.log_artifact(artifact) |
|
|
|
|
|
if use_bucket: |
|
metadata["bucket_path"] = f"gs://{bucket_path}/state" |
|
artifact_state = wandb.Artifact( |
|
name=f"state-{wandb.run.id}", |
|
type="DalleBart_state", |
|
metadata=metadata, |
|
) |
|
if use_bucket: |
|
artifact_state.add_reference(metadata["bucket_path"]) |
|
else: |
|
artifact_state.add_file( |
|
f"{Path(training_args.output_dir) / 'opt_state.msgpack'}" |
|
) |
|
wandb.run.log_artifact(artifact_state) |
|
metrics_logger.log_time("save_model", time.perf_counter() - start_save_time) |
|
|
|
logger.info(" Ready to start training") |
|
with mesh: |
|
for epoch in epochs: |
|
state = state.replace(epoch=epoch) |
|
local_state["epoch"] = epoch |
|
|
|
metrics_logger.update_state_metrics(local_state) |
|
metrics_logger.log({}) |
|
|
|
if training_args.do_train: |
|
|
|
node_groups = max( |
|
1, training_args.mp_devices // jax.local_device_count() |
|
) |
|
loader_bs = batch_size_per_node * node_groups |
|
train_loader = dataset.dataloader( |
|
"train", |
|
loader_bs, |
|
epoch, |
|
) |
|
|
|
for batch in tqdm( |
|
train_loader, |
|
desc="Training...", |
|
position=1, |
|
leave=False, |
|
total=steps_per_epoch, |
|
disable=jax.process_index() > 0, |
|
): |
|
|
|
train_time = time.perf_counter() - start_time |
|
|
|
|
|
evaluation_ran = False |
|
save_model_ran = False |
|
|
|
|
|
|
|
bs_shape = ( |
|
(batch_size_per_node_per_grad_step * node_groups,) |
|
if not use_vmap_trick |
|
else ( |
|
jax.local_device_count() |
|
* node_groups |
|
// training_args.mp_devices, |
|
training_args.per_device_train_batch_size, |
|
) |
|
) |
|
if training_args.gradient_accumulation_steps > 1: |
|
|
|
|
|
bs_shape = ( |
|
training_args.gradient_accumulation_steps, |
|
) + bs_shape |
|
|
|
|
|
batch = jax.tree_map( |
|
lambda x: x.reshape(bs_shape + x.shape[1:]), |
|
batch, |
|
) |
|
|
|
batch = freeze(batch) |
|
|
|
|
|
state, train_metrics = p_train_step(state, batch, train_time) |
|
local_state["step"] += 1 |
|
local_state["train_time"] = train_time |
|
local_state["train_samples"] += batch_size_per_step |
|
|
|
if ( |
|
local_state["step"] % training_args.logging_steps == 0 |
|
and jax.process_index() == 0 |
|
): |
|
metrics_logger.update_state_metrics(local_state) |
|
metrics_logger.log(train_metrics, prefix="train") |
|
|
|
eval_metrics = None |
|
if local_state["step"] % training_args.eval_steps == 0: |
|
eval_metrics = run_evaluation() |
|
evaluation_ran = True |
|
|
|
if local_state["step"] % training_args.save_steps == 0: |
|
run_save_model(state, eval_metrics) |
|
save_model_ran = True |
|
|
|
|
|
if train_metrics is not None: |
|
metrics_logger.update_state_metrics(state) |
|
metrics_logger.log(train_metrics, prefix="train") |
|
|
|
epochs.write( |
|
f"Epoch... ({epoch + 1}/{num_epochs} | Loss: {train_metrics['loss']}, Learning Rate: {train_metrics['learning_rate']})" |
|
) |
|
|
|
|
|
if not evaluation_ran: |
|
eval_metrics = run_evaluation() |
|
|
|
|
|
if not save_model_ran: |
|
run_save_model(state, eval_metrics) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|