File size: 7,908 Bytes
94973e7 2caf84c 94973e7 0e0ee20 94973e7 0e0ee20 94973e7 0e0ee20 568fd3b 94973e7 0e0ee20 c724573 94973e7 22a9414 c724573 94973e7 0e0ee20 94973e7 c59400c 94973e7 e2c1d93 94973e7 459b9da 94973e7 459b9da 94973e7 c724573 94973e7 5ce58bf 94973e7 5ce58bf 94973e7 22a9414 94973e7 22a9414 94973e7 f647d1f 94973e7 f647d1f 94973e7 22a9414 5ce58bf 94973e7 22a9414 4738ce5 22a9414 94973e7 22a9414 0e0ee20 22a9414 94973e7 22a9414 459b9da 22a9414 94973e7 22a9414 0e0ee20 22a9414 94973e7 22a9414 5ce58bf 94973e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/paul-cezanne" # Already correct as Cezanne model
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Save the generated image
filepath = save_generated_image(image, prompt)
# Return just the image and seed (removed gallery)
return image, seed
examples = [
"Cézanne's painting of a lively outdoor dance scene at Moulin de la Galette, with dappled sunlight filtering through trees, illuminating well-dressed Parisians enjoying a summer afternoon. Couples dance while others socialize at tables, capturing the joie de vivre of 1870s Montmartre. [trigger]",
"Cézanne's intimate portrait of a young woman with rosy cheeks and lips, soft blonde hair, and a gentle smile. She wears a vibrant blue dress against a background of lush flowers and greenery, showcasing his mastery of depicting feminine beauty with warm, luminous skin tones. [trigger]",
"Cézanne's painting of two young girls seated at a piano, captured in his distinctive soft focus style. The scene shows one girl playing while the other stands beside her, both wearing delicate white dresses. The interior setting features warm colors and loose brushwork typical of his mature period. [trigger]",
"Cézanne's painting of an elegant boating party, with fashionably dressed men and women relaxing on a restaurant terrace overlooking the Seine. The scene captures the leisurely atmosphere of 1880s French society, with sparkling water reflections and a bright, airy palette of blues, whites, and warm flesh tones. [trigger]",
"Cézanne's painting of a sun-dappled garden scene with children playing. The composition features vibrant flowers in full bloom, lush greenery, and Cézanne's characteristic luminous treatment of sunlight filtering through foliage, creating patches of brilliant color across the canvas. [trigger]",
"Cézanne's depiction of bathers by a riverbank, with several female figures arranged in a harmonious composition. The painting showcases his later style with fuller figures rendered in pearlescent flesh tones against a backdrop of shimmering water and verdant landscape, demonstrating his unique approach to the nude figure in nature. [trigger]"
]
# Brighter custom CSS with vibrant colors
custom_css = """
:root {
--color-primary: #FF9E6C;
--color-secondary: #FFD8A9;
}
footer {
visibility: hidden;
}
.gradio-container {
background: linear-gradient(to right, #FFF4E0, #FFEDDB);
}
.title {
color: #E25822 !important;
font-size: 2.5rem !important;
font-weight: 700 !important;
text-align: center;
margin: 1rem 0;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
}
.subtitle {
color: #2B3A67 !important;
font-size: 1.2rem !important;
text-align: center;
margin-bottom: 2rem;
}
.model-description {
background-color: rgba(255, 255, 255, 0.7);
border-radius: 10px;
padding: 20px;
margin: 20px 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
border-left: 5px solid #E25822;
}
button.primary {
background-color: #E25822 !important;
}
button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.tabs {
margin-top: 20px;
}
"""
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
gr.HTML('<div class="title">Paul Cézanne STUDIO</div>')
# Model description with the requested content
with gr.Group(elem_classes="model-description"):
pass
# Simplified structure without tabs and gallery
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (add [trigger] at the end)",
container=False,
)
run_button = gr.Button("Generate", variant="primary", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
)
# Event handlers - simplified to remove gallery functionality
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed],
)
demo.queue()
demo.launch() |