File size: 22,951 Bytes
cbdb263 a1f53eb cbdb263 a1f53eb cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 af31053 d99e0f6 af31053 d99e0f6 af31053 d99e0f6 af31053 d99e0f6 af31053 d99e0f6 af31053 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 d99e0f6 cbdb263 a1f53eb cbdb263 af31053 cbdb263 af31053 cbdb263 af31053 cbdb263 af31053 cbdb263 af31053 cbdb263 af31053 cbdb263 af31053 cbdb263 af31053 cbdb263 af31053 cbdb263 af31053 cbdb263 af31053 cbdb263 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 |
# ===== CRITICAL: Import spaces FIRST before any CUDA operations =====
try:
import spaces
HF_SPACES = True
except ImportError:
# If running locally, create a dummy decorator
def spaces_gpu_decorator(duration=60):
def decorator(func):
return func
return decorator
spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})()
HF_SPACES = False
print("Warning: Running without Hugging Face Spaces GPU allocation")
# ===== Now import other libraries =====
import random
import os
import uuid
import re
import time
from datetime import datetime
import gradio as gr
import numpy as np
import requests
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# ===== OpenAI μ€μ =====
from openai import OpenAI
# Add error handling for API key
try:
client = OpenAI(api_key=os.getenv("LLM_API"))
except Exception as e:
print(f"Warning: OpenAI client initialization failed: {e}")
client = None
# ===== ν둬ννΈ μ¦κ°μ© μ€νμΌ ν리μ
=====
STYLE_PRESETS = {
"None": "",
"Realistic Photo": "photorealistic, 8k, ultra-detailed, cinematic lighting, realistic skin texture",
"Oil Painting": "oil painting, rich brush strokes, canvas texture, baroque lighting",
"Comic Book": "comic book style, bold ink outlines, cel shading, vibrant colors",
"Watercolor": "watercolor illustration, soft gradients, splatter effect, pastel palette",
}
# ===== μ μ₯ ν΄λ =====
SAVE_DIR = "saved_images"
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
# ===== λλ°μ΄μ€ & λͺ¨λΈ λ‘λ =====
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "seawolf2357/chocs"
# Add error handling for model loading
try:
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
pipeline = None
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# ===== νκΈ μ¬λΆ νλ³ =====
HANGUL_RE = re.compile(r"[\u3131-\u318E\uAC00-\uD7A3]+")
def is_korean(text: str) -> bool:
return bool(HANGUL_RE.search(text))
# ===== λ²μ & μ¦κ° ν¨μ =====
def openai_translate(text: str, retries: int = 3) -> str:
"""νκΈμ μμ΄λ‘ λ²μ (OpenAI GPT-4o-mini μ¬μ©). μμ΄ μ
λ ₯μ΄λ©΄ κ·Έλλ‘ λ°ν."""
if not is_korean(text):
return text
if client is None:
print("Warning: OpenAI client not available, returning original text")
return text
for attempt in range(retries):
try:
res = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": "Translate the following Korean prompt into concise, descriptive English suitable for an image generation model. Keep the meaning, do not add new concepts."
},
{"role": "user", "content": text}
],
temperature=0.3,
max_tokens=256,
)
return res.choices[0].message.content.strip()
except Exception as e:
print(f"[translate] attempt {attempt + 1} failed: {e}")
time.sleep(2)
return text # λ²μ μ€ν¨ μ μλ¬Έ κ·Έλλ‘
def enhance_prompt(text: str, retries: int = 3) -> str:
"""OpenAIλ₯Ό ν΅ν΄ ν둬ννΈλ₯Ό μ¦κ°νμ¬ κ³ νμ§ μ΄λ―Έμ§ μμ±μ μν μμΈν μ€λͺ
μΌλ‘ λ³ν."""
if client is None:
print("Warning: OpenAI client not available, returning original text")
return text
for attempt in range(retries):
try:
res = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": """You are an expert prompt engineer for image generation models. Enhance the given prompt to create high-quality, detailed images.
Guidelines:
- Add specific visual details (lighting, composition, colors, textures)
- Include technical photography terms (depth of field, focal length, etc.)
- Add atmosphere and mood descriptors
- Specify image quality terms (4K, ultra-detailed, professional, etc.)
- Keep the core subject and meaning intact
- Make it comprehensive but not overly long
- Focus on visual elements that will improve image generation quality
Example:
Input: "A man giving a speech"
Output: "A professional man giving an inspiring speech at a podium, dramatic lighting with warm spotlights, confident posture and gestures, high-resolution 4K photography, sharp focus, cinematic composition, bokeh background with audience silhouettes, professional event setting, detailed facial expressions, realistic skin texture"
"""
},
{"role": "user", "content": f"Enhance this prompt for high-quality image generation: {text}"}
],
temperature=0.7,
max_tokens=512,
)
return res.choices[0].message.content.strip()
except Exception as e:
print(f"[enhance] attempt {attempt + 1} failed: {e}")
time.sleep(2)
return text # μ¦κ° μ€ν¨ μ μλ¬Έ κ·Έλλ‘
def prepare_prompt(user_prompt: str, style_key: str, enhance_prompt_enabled: bool = False) -> str:
"""νκΈμ΄λ©΄ λ²μνκ³ , ν둬ννΈ μ¦κ° μ΅μ
μ΄ νμ±νλλ©΄ μ¦κ°νκ³ , μ νν μ€νμΌ ν리μ
μ λΆμ¬μ μ΅μ’
ν둬ννΈλ₯Ό λ§λ λ€."""
# 1. λ²μ (νκΈμΈ κ²½μ°)
prompt_en = openai_translate(user_prompt)
# 2. ν둬ννΈ μ¦κ° (νμ±νλ κ²½μ°)
if enhance_prompt_enabled:
prompt_en = enhance_prompt(prompt_en)
print(f"Enhanced prompt: {prompt_en}")
# 3. μ€νμΌ ν리μ
μ μ©
style_suffix = STYLE_PRESETS.get(style_key, "")
if style_suffix:
final_prompt = f"{prompt_en}, {style_suffix}"
else:
final_prompt = prompt_en
return final_prompt
# ===== μ΄λ―Έμ§ μ μ₯ =====
def save_generated_image(image: Image.Image, prompt: str) -> str:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
image.save(filepath)
# λ©νλ°μ΄ν° μ μ₯
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
# ===== Diffusion νΈμΆ =====
def run_pipeline(prompt: str, seed: int, width: int, height: int, guidance_scale: float, num_steps: int, lora_scale: float):
if pipeline is None:
raise ValueError("Model pipeline not loaded")
generator = torch.Generator(device=device).manual_seed(int(seed))
result = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return result
# ===== Gradio inference λνΌ =====
@spaces.GPU(duration=60)
def generate_image(
user_prompt: str,
style_key: str,
enhance_prompt_enabled: bool = False,
seed: int = 42,
randomize_seed: bool = True,
width: int = 1024,
height: int = 768,
guidance_scale: float = 3.5,
num_inference_steps: int = 30,
lora_scale: float = 1.0,
progress=None,
):
try:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# 1) λ²μ + μ¦κ°
final_prompt = prepare_prompt(user_prompt, style_key, enhance_prompt_enabled)
print(f"Final prompt: {final_prompt}")
# 2) νμ΄νλΌμΈ νΈμΆ
image = run_pipeline(final_prompt, seed, width, height, guidance_scale, num_inference_steps, lora_scale)
# 3) μ μ₯
save_generated_image(image, final_prompt)
return image, seed
except Exception as e:
print(f"Error generating image: {e}")
# Return a placeholder or error message
error_image = Image.new('RGB', (width, height), color='red')
return error_image, seed
# ===== μμ ν둬ννΈ (νκ΅μ΄/μμ΄ νΌμ© νμ©) =====
examples = [
"Mr. cho λ μμΌλ‘ 'Healing !' νμλ§μ λ€κ³ μλ λͺ¨μ΅, ν경보νΈμ μ§μκ°λ₯ν μμ
λ°μ μ λν μμ§λ₯Ό 보μ¬μ£Όκ³ μλ€.",
"Mr. cho μνμ λ€μ΄ μ¬λ¦¬λ©° κΈ°μ νμ μΌλ‘ ννΈνλ λͺ¨μ΅, μ‘°λ¦Ό μ¬μ
μ±κ³΅κ³Ό λ―Έλ μμ
μ λν ν¬λ§μ 보μ¬μ£Όκ³ μλ€.",
"Mr. cho μ΄λ볡μ μ
κ³ μ°λ¦Ό μμμ νΈλ νΉνλ λͺ¨μ΅, 건κ°ν μνμ΅κ΄κ³Ό νκΈ°μ°¬ 리λμμ 보μ¬μ£Όκ³ μλ€.",
"Mr. cho μ°μ΄ λ§μμμ μ¬μ± μμ
μΈλ€κ³Ό λ°λ»νκ² μ
μνλ λͺ¨μ΅, μ¬μ± μμ
μ’
μ¬μλ€μ λν μ§μ ν κ΄μ¬κ³Ό μν΅μ 보μ¬μ£Όκ³ μλ€.",
"Mr. cho μμ
λ°λνμ₯μμ μΈμ°½ν μ²μ ν₯ν΄ μκ°λ½μΌλ‘ κ°λ¦¬ν€λ©° μκ°μ μ£Όλ μ μ€μ²λ₯Ό μ·¨νκ³ μκ³ , μ¬μ±λ€κ³Ό μμ΄λ€μ΄ λ°μλ₯Ό μΉκ³ μλ€.",
"Mr. cho μ°λ¦ΌμΆμ μ μ°Έμ¬νμ¬ μ΄μ μ μΌλ‘ μμνλ μ¬μ± μμ
μΈλ€μκ² λλ¬μΈμ¬ μλ λͺ¨μ΅.",
"Mr. cho λͺ©μ¬μμ₯μ λ°©λ¬Ένμ¬ μ¬μ± λͺ©μ¬μλ€κ³Ό λͺ©κ³΅μ μ₯μΈλ€κ³Ό μΉκ·Όνκ² λννλ λͺ¨μ΅.",
"Mr. cho μ°λ¦Όκ³Όνμμ λλ¬λ³΄λ©° μ¬μ± μ°κ΅¬μλ€κ³Ό κ΅μλ€κ³Ό ν¨κ» μμ
μ μ±
μ λν΄ ν λ‘ νλ λͺ¨μ΅.",
"Mr. cho λκ·λͺ¨ μμ
μΈ λνμμ μμ κ° μλ μ μ€μ²μ κ²°μ°ν νμ μΌλ‘ μλμ μΈ μ°μ€μ νλ λͺ¨μ΅.",
"Mr. cho νκΈ°μ°¬ μΈν°λ·° νμ₯μμ λ―Έλ μμ
λ°μ μ λν λΉμ μ μ΄μ μ μΌλ‘ μ€λͺ
νλ λͺ¨μ΅.",
"Mr. cho μ€μν μμ
μ μ±
νμλ₯Ό μ€λΉνλ©° μλ₯λ€μ λλ¬μΈμ¬ μ§μ€νκ³ λ¨νΈν λͺ¨μ΅μ 보μ΄λ λͺ¨μ΅."
]
# ===== 컀μ€ν
CSS (μ§ν λΆμμ κ³ κΈ λμμΈ) =====
custom_css = """
:root {
--color-primary: #E91E63;
--color-secondary: #FCE4EC;
--color-accent: #F8BBD9;
--color-rose: #F06292;
--color-gold: #FFB74D;
--color-warm-gray: #F5F5F5;
--color-dark-gray: #424242;
--background-primary: linear-gradient(135deg, #FAFAFA 0%, #F5F5F5 50%, #EEEEEE 100%);
--background-accent: linear-gradient(135deg, #FCE4EC 0%, #F8BBD9 100%);
--text-primary: #212121;
--text-secondary: #757575;
--shadow-soft: 0 4px 20px rgba(0, 0, 0, 0.08);
--shadow-medium: 0 8px 30px rgba(0, 0, 0, 0.12);
--border-radius: 16px;
}
/* μ 체 λ°°κ²½ */
footer {visibility: hidden;}
.gradio-container {
background: var(--background-primary) !important;
min-height: 100vh;
font-family: 'Inter', 'Noto Sans KR', sans-serif;
}
/* νμ΄ν μ€νμΌ */
.title {
color: var(--text-primary) !important;
font-size: 3rem !important;
font-weight: 700 !important;
text-align: center;
margin: 2rem 0;
background: linear-gradient(135deg, var(--color-primary) 0%, var(--color-rose) 50%, var(--color-gold) 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
letter-spacing: -0.02em;
}
.subtitle {
color: var(--text-secondary) !important;
font-size: 1.2rem !important;
text-align: center;
margin-bottom: 2rem;
font-weight: 400;
}
.collection-link {
text-align: center;
margin-bottom: 2rem;
font-size: 1rem;
}
.collection-link a {
color: var(--color-primary);
text-decoration: none;
transition: all 0.3s ease;
font-weight: 500;
border-bottom: 1px solid transparent;
}
.collection-link a:hover {
color: var(--color-rose);
border-bottom-color: var(--color-rose);
}
/* μ¬νν μΉ΄λ μ€νμΌ */
.model-description {
background: rgba(255, 255, 255, 0.9);
border: 1px solid rgba(233, 30, 99, 0.1);
border-radius: var(--border-radius);
padding: 2rem;
margin: 1.5rem 0;
box-shadow: var(--shadow-soft);
backdrop-filter: blur(10px);
-webkit-backdrop-filter: blur(10px);
}
.model-description p {
color: var(--text-primary) !important;
font-size: 1rem;
line-height: 1.6;
margin: 0;
}
/* λ²νΌ μ€νμΌ */
button.primary {
background: var(--background-accent) !important;
color: var(--color-primary) !important;
border: 1px solid var(--color-accent) !important;
border-radius: 12px !important;
box-shadow: var(--shadow-soft) !important;
transition: all 0.2s ease !important;
font-weight: 600 !important;
font-size: 0.95rem !important;
}
button.primary:hover {
background: linear-gradient(135deg, var(--color-accent) 0%, var(--color-secondary) 100%) !important;
transform: translateY(-1px) !important;
box-shadow: var(--shadow-medium) !important;
}
/* μ
λ ₯ 컨ν
μ΄λ */
.input-container {
background: rgba(255, 255, 255, 0.8);
border: 1px solid rgba(233, 30, 99, 0.15);
border-radius: var(--border-radius);
padding: 1.5rem;
margin-bottom: 1.5rem;
box-shadow: var(--shadow-soft);
backdrop-filter: blur(10px);
-webkit-backdrop-filter: blur(10px);
}
/* κ³ κΈ μ€μ */
.advanced-settings {
background: rgba(255, 255, 255, 0.6);
border: 1px solid rgba(233, 30, 99, 0.1);
border-radius: var(--border-radius);
padding: 1.5rem;
margin-top: 1rem;
box-shadow: var(--shadow-soft);
backdrop-filter: blur(8px);
-webkit-backdrop-filter: blur(8px);
}
/* μμ μμ */
.example-region {
background: rgba(252, 228, 236, 0.3);
border: 1px solid rgba(233, 30, 99, 0.15);
border-radius: var(--border-radius);
padding: 1.5rem;
margin-top: 1rem;
box-shadow: var(--shadow-soft);
}
/* ν둬ννΈ μ
λ ₯μΉΈ μ€νμΌ */
.large-prompt textarea {
min-height: 120px !important;
font-size: 15px !important;
line-height: 1.5 !important;
background: rgba(255, 255, 255, 0.9) !important;
border: 2px solid rgba(233, 30, 99, 0.2) !important;
border-radius: 12px !important;
color: var(--text-primary) !important;
transition: all 0.3s ease !important;
padding: 1rem !important;
}
.large-prompt textarea:focus {
border-color: var(--color-primary) !important;
box-shadow: 0 0 0 3px rgba(233, 30, 99, 0.1) !important;
outline: none !important;
}
.large-prompt textarea::placeholder {
color: var(--text-secondary) !important;
font-style: italic;
}
/* μμ± λ²νΌ */
.small-generate-btn {
max-width: 140px !important;
height: 48px !important;
font-size: 15px !important;
padding: 12px 24px !important;
border-radius: 12px !important;
font-weight: 600 !important;
}
/* ν둬ννΈ μ¦κ° μΉμ
*/
.prompt-enhance-section {
background: linear-gradient(135deg, rgba(255, 183, 77, 0.1) 0%, rgba(252, 228, 236, 0.2) 100%);
border: 1px solid rgba(255, 183, 77, 0.3);
border-radius: var(--border-radius);
padding: 1.2rem;
margin-top: 1rem;
box-shadow: var(--shadow-soft);
}
/* μ€νμΌ ν리μ
μΉμ
*/
.style-preset-section {
background: linear-gradient(135deg, rgba(248, 187, 217, 0.15) 0%, rgba(252, 228, 236, 0.2) 100%);
border: 1px solid rgba(233, 30, 99, 0.2);
border-radius: var(--border-radius);
padding: 1.2rem;
margin-top: 1rem;
box-shadow: var(--shadow-soft);
}
/* λΌλ²¨ ν
μ€νΈ */
label {
color: var(--text-primary) !important;
font-weight: 600 !important;
font-size: 0.95rem !important;
}
/* μ 보 ν
μ€νΈ */
.gr-info, .gr-textbox-info {
color: var(--text-secondary) !important;
font-size: 0.85rem !important;
line-height: 1.4 !important;
}
/* μμ λ§ν¬λ€μ΄ */
.example-region h3 {
color: var(--text-primary) !important;
font-weight: 600 !important;
margin-bottom: 1rem !important;
}
/* νΌ μμλ€ */
input[type="radio"], input[type="checkbox"] {
accent-color: var(--color-primary) !important;
}
input[type="range"] {
accent-color: var(--color-primary) !important;
}
/* κ²°κ³Ό μ΄λ―Έμ§ 컨ν
μ΄λ */
.image-container {
border-radius: var(--border-radius) !important;
overflow: hidden !important;
box-shadow: var(--shadow-medium) !important;
background: rgba(255, 255, 255, 0.9) !important;
border: 1px solid rgba(233, 30, 99, 0.1) !important;
}
/* μ¬λΌμ΄λ 컨ν
μ΄λ μ€νμΌλ§ */
.gr-slider {
margin: 0.5rem 0 !important;
}
/* μμ½λμΈ μ€νμΌ */
.gr-accordion {
border: 1px solid rgba(233, 30, 99, 0.15) !important;
border-radius: var(--border-radius) !important;
background: rgba(255, 255, 255, 0.7) !important;
}
.gr-accordion-header {
background: var(--background-accent) !important;
color: var(--color-primary) !important;
font-weight: 600 !important;
border-radius: var(--border-radius) var(--border-radius) 0 0 !important;
}
/* λΆλλ¬μ΄ μ λλ©μ΄μ
*/
.model-description, .input-container, .prompt-enhance-section, .style-preset-section {
animation: fadeInUp 0.4s ease-out;
}
@keyframes fadeInUp {
from {
opacity: 0;
transform: translateY(20px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
/* μ 체μ μΈ ν
μ€νΈ κ°λ
μ± ν₯μ */
* {
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
}
/* λλ‘λ€μ΄ λ° μ
λ νΈ μ€νμΌ */
select, .gr-dropdown {
background: rgba(255, 255, 255, 0.9) !important;
border: 1px solid rgba(233, 30, 99, 0.2) !important;
border-radius: 8px !important;
color: var(--text-primary) !important;
}
/* 체ν¬λ°μ€μ λΌλμ€ λ²νΌ κ°μ */
.gr-checkbox, .gr-radio {
background: transparent !important;
}
/* μ 체 컨ν
μ΄λ μ¬λ°± μ‘°μ */
.gr-container {
max-width: 1200px !important;
margin: 0 auto !important;
padding: 2rem 1rem !important;
}
/* λͺ¨λ°μΌ λ°μν */
@media (max-width: 768px) {
.title {
font-size: 2.2rem !important;
}
.model-description, .input-container, .advanced-settings, .example-region {
padding: 1rem !important;
margin: 1rem 0 !important;
}
.large-prompt textarea {
min-height: 100px !important;
font-size: 14px !important;
}
}
"""
# ===== Gradio UI =====
def create_interface():
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
with gr.Group(elem_classes="model-description"):
gr.HTML("""
<p>
<strong>Mr. CHO CS</strong><br>
<small style="opacity: 0.8;">λ³Έ λͺ¨λΈμ μ°κ΅¬ λͺ©μ μΌλ‘ νΉμ μΈμ μΌκ΅΄κ³Ό μΈλͺ¨λ₯Ό LoRA κΈ°μ λ‘ νμ΅ν λͺ¨λΈμ
λλ€.λͺ©μ μΈμ μ©λλ‘ λ¬΄λ¨ μ¬μ©νμ§ μλλ‘ μ μν΄ μ£ΌμΈμ. ν둬ννΈμ 'cho'μ ν¬ν¨νμ¬ μ£ΌμΈμ.</small><br><br>
""")
# ===== λ©μΈ μ
λ ₯ =====
with gr.Column():
with gr.Row(elem_classes="input-container"):
with gr.Column(scale=4):
user_prompt = gr.Text(
label="Prompt (ν둬ννΈ)",
max_lines=5,
value=examples[0],
elem_classes="large-prompt",
placeholder="Enter your image description here... (μ΄λ―Έμ§ μ€λͺ
μ μ
λ ₯νμΈμ...)"
)
with gr.Column(scale=1):
run_button = gr.Button(
"Generate (μμ±)",
variant="primary",
elem_classes="small-generate-btn"
)
# ν둬ννΈ μ¦κ° μ΅μ
(μμ± λ²νΌ μλ)
with gr.Group(elem_classes="prompt-enhance-section"):
enhance_prompt_checkbox = gr.Checkbox(
label="π Prompt Enhancement (ν둬ννΈ μ¦κ°)",
value=False,
info="Automatically improve your prompt using OpenAI API for high-quality image generation (OpenAI APIλ₯Ό μ¬μ©νμ¬ κ³ νμ§ μ΄λ―Έμ§ μμ±μ μν΄ ν둬ννΈλ₯Ό μλμΌλ‘ κ°μ ν©λλ€)"
)
# μ€νμΌ ν리μ
μΉμ
with gr.Group(elem_classes="style-preset-section"):
style_select = gr.Radio(
label="π¨ Style Preset (μ€νμΌ ν리μ
)",
choices=list(STYLE_PRESETS.keys()),
value="None",
interactive=True
)
result_image = gr.Image(label="Generated Image (μμ±λ μ΄λ―Έμ§)")
seed_output = gr.Number(label="Seed (μλκ°)")
# ===== κ³ κΈ μ€μ =====
with gr.Accordion("Advanced Settings (κ³ κΈ μ€μ )", open=False, elem_classes="advanced-settings"):
seed = gr.Slider(label="Seed (μλκ°)", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed = gr.Checkbox(label="Randomize seed (μλκ° λ¬΄μμ)", value=True)
with gr.Row():
width = gr.Slider(label="Width (κ°λ‘)", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height (μΈλ‘)", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale (κ°μ΄λμ€ μ€μΌμΌ)", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
num_inference_steps = gr.Slider(label="Inference steps (μΆλ‘ λ¨κ³)", minimum=1, maximum=50, step=1, value=30)
lora_scale = gr.Slider(label="LoRA scale (LoRA μ€μΌμΌ)", minimum=0.0, maximum=1.0, step=0.1, value=1.0)
# ===== μμ μμ =====
with gr.Group(elem_classes="example-region"):
gr.Markdown("### Examples (μμ)")
gr.Examples(examples=examples, inputs=user_prompt, cache_examples=False)
# ===== μ΄λ²€νΈ =====
run_button.click(
fn=generate_image,
inputs=[
user_prompt,
style_select,
enhance_prompt_checkbox,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result_image, seed_output],
)
return demo
# ===== μ ν리μΌμ΄μ
μ€ν =====
if __name__ == "__main__":
demo = create_interface()
demo.queue()
demo.launch() |