File size: 22,951 Bytes
cbdb263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f53eb
cbdb263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1f53eb
 
 
 
 
 
 
 
 
 
 
cbdb263
 
 
 
 
d99e0f6
 
 
 
 
 
 
 
 
 
 
 
 
 
cbdb263
 
 
 
 
d99e0f6
cbdb263
d99e0f6
cbdb263
 
 
 
d99e0f6
 
 
cbdb263
 
d99e0f6
cbdb263
 
 
d99e0f6
cbdb263
 
 
d99e0f6
 
cbdb263
 
d99e0f6
cbdb263
 
 
 
 
d99e0f6
cbdb263
 
 
d99e0f6
cbdb263
 
d99e0f6
 
cbdb263
 
 
d99e0f6
 
cbdb263
 
d99e0f6
cbdb263
d99e0f6
 
 
 
 
 
 
 
cbdb263
 
 
d99e0f6
 
cbdb263
d99e0f6
cbdb263
 
 
 
d99e0f6
 
 
 
 
 
cbdb263
d99e0f6
cbdb263
 
 
d99e0f6
 
 
cbdb263
 
 
 
d99e0f6
 
 
 
 
 
 
 
cbdb263
 
 
 
d99e0f6
 
 
 
 
 
 
 
cbdb263
 
 
 
d99e0f6
 
 
 
 
 
cbdb263
 
d99e0f6
cbdb263
 
d99e0f6
cbdb263
d99e0f6
 
cbdb263
d99e0f6
cbdb263
d99e0f6
cbdb263
 
 
d99e0f6
 
 
cbdb263
 
 
d99e0f6
 
cbdb263
 
d99e0f6
cbdb263
d99e0f6
 
 
 
cbdb263
d99e0f6
cbdb263
 
d99e0f6
cbdb263
d99e0f6
 
 
 
 
 
cbdb263
 
 
 
d99e0f6
 
 
 
 
 
cbdb263
 
d99e0f6
cbdb263
d99e0f6
cbdb263
d99e0f6
af31053
 
d99e0f6
af31053
d99e0f6
af31053
 
 
 
d99e0f6
af31053
d99e0f6
af31053
d99e0f6
af31053
 
d99e0f6
cbdb263
d99e0f6
cbdb263
 
 
d99e0f6
cbdb263
 
 
 
d99e0f6
cbdb263
d99e0f6
 
 
 
 
 
 
 
cbdb263
 
d99e0f6
 
 
 
 
cbdb263
 
d99e0f6
 
 
 
 
 
 
 
cbdb263
d99e0f6
cbdb263
 
 
 
 
d99e0f6
cbdb263
 
 
 
 
 
d99e0f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cbdb263
 
 
 
 
 
 
 
a1f53eb
 
cbdb263
 
 
 
 
 
 
af31053
cbdb263
 
af31053
 
cbdb263
 
 
af31053
cbdb263
 
 
 
 
 
 
af31053
cbdb263
af31053
cbdb263
 
 
 
 
af31053
cbdb263
 
 
 
 
af31053
 
cbdb263
 
af31053
 
 
cbdb263
af31053
 
cbdb263
af31053
 
 
cbdb263
 
 
af31053
cbdb263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
# ===== CRITICAL: Import spaces FIRST before any CUDA operations =====
try:
    import spaces
    HF_SPACES = True
except ImportError:
    # If running locally, create a dummy decorator
    def spaces_gpu_decorator(duration=60):
        def decorator(func):
            return func
        return decorator
    spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})()
    HF_SPACES = False
    print("Warning: Running without Hugging Face Spaces GPU allocation")

# ===== Now import other libraries =====
import random
import os
import uuid
import re
import time
from datetime import datetime

import gradio as gr
import numpy as np
import requests
import torch
from diffusers import DiffusionPipeline
from PIL import Image

# ===== OpenAI μ„€μ • =====
from openai import OpenAI

# Add error handling for API key
try:
    client = OpenAI(api_key=os.getenv("LLM_API"))
except Exception as e:
    print(f"Warning: OpenAI client initialization failed: {e}")
    client = None

# ===== ν”„λ‘¬ν”„νŠΈ μ¦κ°•μš© μŠ€νƒ€μΌ 프리셋 =====
STYLE_PRESETS = {
    "None": "",
    "Realistic Photo": "photorealistic, 8k, ultra-detailed, cinematic lighting, realistic skin texture",
    "Oil Painting": "oil painting, rich brush strokes, canvas texture, baroque lighting",
    "Comic Book": "comic book style, bold ink outlines, cel shading, vibrant colors",
    "Watercolor": "watercolor illustration, soft gradients, splatter effect, pastel palette",
}

# ===== μ €μž₯ 폴더 =====
SAVE_DIR = "saved_images"
if not os.path.exists(SAVE_DIR):
    os.makedirs(SAVE_DIR, exist_ok=True)

# ===== λ””λ°”μ΄μŠ€ & λͺ¨λΈ λ‘œλ“œ =====
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "seawolf2357/chocs"

# Add error handling for model loading
try:
    pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
    pipeline.load_lora_weights(adapter_id)
    pipeline = pipeline.to(device)
    print("Model loaded successfully")
except Exception as e:
    print(f"Error loading model: {e}")
    pipeline = None

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024

# ===== ν•œκΈ€ μ—¬λΆ€ νŒλ³„ =====
HANGUL_RE = re.compile(r"[\u3131-\u318E\uAC00-\uD7A3]+")

def is_korean(text: str) -> bool:
    return bool(HANGUL_RE.search(text))

# ===== λ²ˆμ—­ & 증강 ν•¨μˆ˜ =====

def openai_translate(text: str, retries: int = 3) -> str:
    """ν•œκΈ€μ„ μ˜μ–΄λ‘œ λ²ˆμ—­ (OpenAI GPT-4o-mini μ‚¬μš©). μ˜μ–΄ μž…λ ₯이면 κ·ΈλŒ€λ‘œ λ°˜ν™˜."""
    if not is_korean(text):
        return text
    
    if client is None:
        print("Warning: OpenAI client not available, returning original text")
        return text

    for attempt in range(retries):
        try:
            res = client.chat.completions.create(
                model="gpt-4o-mini",
                messages=[
                    {
                        "role": "system",
                        "content": "Translate the following Korean prompt into concise, descriptive English suitable for an image generation model. Keep the meaning, do not add new concepts."
                    },
                    {"role": "user", "content": text}
                ],
                temperature=0.3,
                max_tokens=256,
            )
            return res.choices[0].message.content.strip()
        except Exception as e:
            print(f"[translate] attempt {attempt + 1} failed: {e}")
            time.sleep(2)
    return text  # λ²ˆμ—­ μ‹€νŒ¨ μ‹œ 원문 κ·ΈλŒ€λ‘œ

def enhance_prompt(text: str, retries: int = 3) -> str:
    """OpenAIλ₯Ό 톡해 ν”„λ‘¬ν”„νŠΈλ₯Ό μ¦κ°•ν•˜μ—¬ κ³ ν’ˆμ§ˆ 이미지 생성을 μœ„ν•œ μƒμ„Έν•œ μ„€λͺ…μœΌλ‘œ λ³€ν™˜."""
    if client is None:
        print("Warning: OpenAI client not available, returning original text")
        return text

    for attempt in range(retries):
        try:
            res = client.chat.completions.create(
                model="gpt-4o-mini",
                messages=[
                    {
                        "role": "system",
                        "content": """You are an expert prompt engineer for image generation models. Enhance the given prompt to create high-quality, detailed images.

Guidelines:
- Add specific visual details (lighting, composition, colors, textures)
- Include technical photography terms (depth of field, focal length, etc.)
- Add atmosphere and mood descriptors
- Specify image quality terms (4K, ultra-detailed, professional, etc.)
- Keep the core subject and meaning intact
- Make it comprehensive but not overly long
- Focus on visual elements that will improve image generation quality

Example:
Input: "A man giving a speech"
Output: "A professional man giving an inspiring speech at a podium, dramatic lighting with warm spotlights, confident posture and gestures, high-resolution 4K photography, sharp focus, cinematic composition, bokeh background with audience silhouettes, professional event setting, detailed facial expressions, realistic skin texture"
"""
                    },
                    {"role": "user", "content": f"Enhance this prompt for high-quality image generation: {text}"}
                ],
                temperature=0.7,
                max_tokens=512,
            )
            return res.choices[0].message.content.strip()
        except Exception as e:
            print(f"[enhance] attempt {attempt + 1} failed: {e}")
            time.sleep(2)
    return text  # 증강 μ‹€νŒ¨ μ‹œ 원문 κ·ΈλŒ€λ‘œ

def prepare_prompt(user_prompt: str, style_key: str, enhance_prompt_enabled: bool = False) -> str:
    """ν•œκΈ€μ΄λ©΄ λ²ˆμ—­ν•˜κ³ , ν”„λ‘¬ν”„νŠΈ 증강 μ˜΅μ…˜μ΄ ν™œμ„±ν™”λ˜λ©΄ μ¦κ°•ν•˜κ³ , μ„ νƒν•œ μŠ€νƒ€μΌ 프리셋을 λΆ™μ—¬μ„œ μ΅œμ’… ν”„λ‘¬ν”„νŠΈλ₯Ό λ§Œλ“ λ‹€."""
    # 1. λ²ˆμ—­ (ν•œκΈ€μΈ 경우)
    prompt_en = openai_translate(user_prompt)
    
    # 2. ν”„λ‘¬ν”„νŠΈ 증강 (ν™œμ„±ν™”λœ 경우)
    if enhance_prompt_enabled:
        prompt_en = enhance_prompt(prompt_en)
        print(f"Enhanced prompt: {prompt_en}")
    
    # 3. μŠ€νƒ€μΌ 프리셋 적용
    style_suffix = STYLE_PRESETS.get(style_key, "")
    if style_suffix:
        final_prompt = f"{prompt_en}, {style_suffix}"
    else:
        final_prompt = prompt_en
    
    return final_prompt

# ===== 이미지 μ €μž₯ =====

def save_generated_image(image: Image.Image, prompt: str) -> str:
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    unique_id = str(uuid.uuid4())[:8]
    filename = f"{timestamp}_{unique_id}.png"
    filepath = os.path.join(SAVE_DIR, filename)
    image.save(filepath)

    # 메타데이터 μ €μž₯
    metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
    with open(metadata_file, "a", encoding="utf-8") as f:
        f.write(f"{filename}|{prompt}|{timestamp}\n")
    return filepath

# ===== Diffusion 호좜 =====

def run_pipeline(prompt: str, seed: int, width: int, height: int, guidance_scale: float, num_steps: int, lora_scale: float):
    if pipeline is None:
        raise ValueError("Model pipeline not loaded")
    
    generator = torch.Generator(device=device).manual_seed(int(seed))
    result = pipeline(
        prompt=prompt,
        guidance_scale=guidance_scale,
        num_inference_steps=num_steps,
        width=width,
        height=height,
        generator=generator,
        joint_attention_kwargs={"scale": lora_scale},
    ).images[0]
    return result

# ===== Gradio inference 래퍼 =====

@spaces.GPU(duration=60)
def generate_image(
    user_prompt: str,
    style_key: str,
    enhance_prompt_enabled: bool = False,
    seed: int = 42,
    randomize_seed: bool = True,
    width: int = 1024,
    height: int = 768,
    guidance_scale: float = 3.5,
    num_inference_steps: int = 30,
    lora_scale: float = 1.0,
    progress=None,
):
    try:
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)

        # 1) λ²ˆμ—­ + 증강
        final_prompt = prepare_prompt(user_prompt, style_key, enhance_prompt_enabled)
        print(f"Final prompt: {final_prompt}")

        # 2) νŒŒμ΄ν”„λΌμΈ 호좜
        image = run_pipeline(final_prompt, seed, width, height, guidance_scale, num_inference_steps, lora_scale)

        # 3) μ €μž₯
        save_generated_image(image, final_prompt)

        return image, seed
    
    except Exception as e:
        print(f"Error generating image: {e}")
        # Return a placeholder or error message
        error_image = Image.new('RGB', (width, height), color='red')
        return error_image, seed

# ===== μ˜ˆμ‹œ ν”„λ‘¬ν”„νŠΈ (ν•œκ΅­μ–΄/μ˜μ–΄ 혼용 ν—ˆμš©) =====

examples = [
    "Mr. cho 두 μ†μœΌλ‘œ 'Healing !' ν˜„μˆ˜λ§‰μ„ λ“€κ³  μžˆλŠ” λͺ¨μŠ΅, ν™˜κ²½λ³΄ν˜Έμ™€ 지속가λŠ₯ν•œ μž„μ—… λ°œμ „μ— λŒ€ν•œ μ˜μ§€λ₯Ό 보여주고 μžˆλ‹€.",
    "Mr. cho μ–‘νŒ”μ„ λ“€μ–΄ 올리며 기쁜 ν‘œμ •μœΌλ‘œ ν™˜ν˜Έν•˜λŠ” λͺ¨μŠ΅, μ‘°λ¦Ό 사업 성곡과 미래 μž„μ—…μ— λŒ€ν•œ 희망을 보여주고 μžˆλ‹€.",
    "Mr. cho μš΄λ™λ³΅μ„ μž…κ³  μ‚°λ¦Ό μ†μ—μ„œ νŠΈλ ˆν‚Ήν•˜λŠ” λͺ¨μŠ΅, κ±΄κ°•ν•œ μƒν™œμŠ΅κ΄€κ³Ό ν™œκΈ°μ°¬ 리더십을 보여주고 μžˆλ‹€.",
    "Mr. cho μ‚°μ΄Œ λ§ˆμ„μ—μ„œ μ—¬μ„± μž„μ—…μΈλ“€κ³Ό λ”°λœ»ν•˜κ²Œ μ•…μˆ˜ν•˜λŠ” λͺ¨μŠ΅, μ—¬μ„± μž„μ—…μ’…μ‚¬μžλ“€μ— λŒ€ν•œ μ§„μ •ν•œ 관심과 μ†Œν†΅μ„ 보여주고 μžˆλ‹€.",
    "Mr. cho μž„μ—…λ°•λžŒνšŒμž₯μ—μ„œ μšΈμ°½ν•œ μˆ²μ„ ν–₯ν•΄ μ†κ°€λ½μœΌλ‘œ 가리킀며 μ˜κ°μ„ μ£ΌλŠ” 제슀처λ₯Ό μ·¨ν•˜κ³  있고, μ—¬μ„±λ“€κ³Ό 아이듀이 λ°•μˆ˜λ₯Ό 치고 μžˆλ‹€.",
    "Mr. cho μ‚°λ¦ΌμΆ•μ œμ— μ°Έμ—¬ν•˜μ—¬ μ—΄μ •μ μœΌλ‘œ μ‘μ›ν•˜λŠ” μ—¬μ„± μž„μ—…μΈλ“€μ—κ²Œ λ‘˜λŸ¬μ‹Έμ—¬ μžˆλŠ” λͺ¨μŠ΅.",
    "Mr. cho λͺ©μž¬μ‹œμž₯을 λ°©λ¬Έν•˜μ—¬ μ—¬μ„± λͺ©μž¬μƒλ“€κ³Ό λͺ©κ³΅μ˜ˆ μž₯인듀과 μΉœκ·Όν•˜κ²Œ λŒ€ν™”ν•˜λŠ” λͺ¨μŠ΅.",
    "Mr. cho 산림과학원을 λ‘˜λŸ¬λ³΄λ©° μ—¬μ„± 연ꡬ원듀과 κ΅μˆ˜λ“€κ³Ό ν•¨κ»˜ μž„μ—… 정책에 λŒ€ν•΄ ν† λ‘ ν•˜λŠ” λͺ¨μŠ΅.",
    "Mr. cho λŒ€κ·œλͺ¨ μž„μ—…μΈ λŒ€νšŒμ—μ„œ μžμ‹ κ° μžˆλŠ” μ œμŠ€μ²˜μ™€ κ²°μ—°ν•œ ν‘œμ •μœΌλ‘œ 역동적인 연섀을 ν•˜λŠ” λͺ¨μŠ΅.",
    "Mr. cho ν™œκΈ°μ°¬ 인터뷰 ν˜„μž₯μ—μ„œ 미래 μž„μ—… λ°œμ „μ— λŒ€ν•œ 비전을 μ—΄μ •μ μœΌλ‘œ μ„€λͺ…ν•˜λŠ” λͺ¨μŠ΅.",
    "Mr. cho μ€‘μš”ν•œ μž„μ—…μ •μ±… 회의λ₯Ό μ€€λΉ„ν•˜λ©° μ„œλ₯˜λ“€μ— λ‘˜λŸ¬μ‹Έμ—¬ μ§‘μ€‘ν•˜κ³  λ‹¨ν˜Έν•œ λͺ¨μŠ΅μ„ λ³΄μ΄λŠ” λͺ¨μŠ΅."
]

# ===== μ»€μŠ€ν…€ CSS (μ§„ν•œ 뢉은색 κ³ κΈ‰ λ””μžμΈ) =====
custom_css = """
:root {
    --color-primary: #E91E63;
    --color-secondary: #FCE4EC;
    --color-accent: #F8BBD9;
    --color-rose: #F06292;
    --color-gold: #FFB74D;
    --color-warm-gray: #F5F5F5;
    --color-dark-gray: #424242;
    --background-primary: linear-gradient(135deg, #FAFAFA 0%, #F5F5F5 50%, #EEEEEE 100%);
    --background-accent: linear-gradient(135deg, #FCE4EC 0%, #F8BBD9 100%);
    --text-primary: #212121;
    --text-secondary: #757575;
    --shadow-soft: 0 4px 20px rgba(0, 0, 0, 0.08);
    --shadow-medium: 0 8px 30px rgba(0, 0, 0, 0.12);
    --border-radius: 16px;
}

/* 전체 λ°°κ²½ */
footer {visibility: hidden;}
.gradio-container {
    background: var(--background-primary) !important;
    min-height: 100vh;
    font-family: 'Inter', 'Noto Sans KR', sans-serif;
}

/* 타이틀 μŠ€νƒ€μΌ */
.title {
    color: var(--text-primary) !important;
    font-size: 3rem !important;
    font-weight: 700 !important;
    text-align: center;
    margin: 2rem 0;
    background: linear-gradient(135deg, var(--color-primary) 0%, var(--color-rose) 50%, var(--color-gold) 100%);
    -webkit-background-clip: text;
    -webkit-text-fill-color: transparent;
    background-clip: text;
    letter-spacing: -0.02em;
}

.subtitle {
    color: var(--text-secondary) !important;
    font-size: 1.2rem !important;
    text-align: center;
    margin-bottom: 2rem;
    font-weight: 400;
}

.collection-link {
    text-align: center;
    margin-bottom: 2rem;
    font-size: 1rem;
}

.collection-link a {
    color: var(--color-primary);
    text-decoration: none;
    transition: all 0.3s ease;
    font-weight: 500;
    border-bottom: 1px solid transparent;
}

.collection-link a:hover {
    color: var(--color-rose);
    border-bottom-color: var(--color-rose);
}

/* μ‹¬ν”Œν•œ μΉ΄λ“œ μŠ€νƒ€μΌ */
.model-description {
    background: rgba(255, 255, 255, 0.9);
    border: 1px solid rgba(233, 30, 99, 0.1);
    border-radius: var(--border-radius);
    padding: 2rem;
    margin: 1.5rem 0;
    box-shadow: var(--shadow-soft);
    backdrop-filter: blur(10px);
    -webkit-backdrop-filter: blur(10px);
}

.model-description p {
    color: var(--text-primary) !important;
    font-size: 1rem;
    line-height: 1.6;
    margin: 0;
}

/* λ²„νŠΌ μŠ€νƒ€μΌ */
button.primary {
    background: var(--background-accent) !important;
    color: var(--color-primary) !important;
    border: 1px solid var(--color-accent) !important;
    border-radius: 12px !important;
    box-shadow: var(--shadow-soft) !important;
    transition: all 0.2s ease !important;
    font-weight: 600 !important;
    font-size: 0.95rem !important;
}

button.primary:hover {
    background: linear-gradient(135deg, var(--color-accent) 0%, var(--color-secondary) 100%) !important;
    transform: translateY(-1px) !important;
    box-shadow: var(--shadow-medium) !important;
}

/* μž…λ ₯ μ»¨ν…Œμ΄λ„ˆ */
.input-container {
    background: rgba(255, 255, 255, 0.8);
    border: 1px solid rgba(233, 30, 99, 0.15);
    border-radius: var(--border-radius);
    padding: 1.5rem;
    margin-bottom: 1.5rem;
    box-shadow: var(--shadow-soft);
    backdrop-filter: blur(10px);
    -webkit-backdrop-filter: blur(10px);
}

/* κ³ κΈ‰ μ„€μ • */
.advanced-settings {
    background: rgba(255, 255, 255, 0.6);
    border: 1px solid rgba(233, 30, 99, 0.1);
    border-radius: var(--border-radius);
    padding: 1.5rem;
    margin-top: 1rem;
    box-shadow: var(--shadow-soft);
    backdrop-filter: blur(8px);
    -webkit-backdrop-filter: blur(8px);
}

/* μ˜ˆμ‹œ μ˜μ—­ */
.example-region {
    background: rgba(252, 228, 236, 0.3);
    border: 1px solid rgba(233, 30, 99, 0.15);
    border-radius: var(--border-radius);
    padding: 1.5rem;
    margin-top: 1rem;
    box-shadow: var(--shadow-soft);
}

/* ν”„λ‘¬ν”„νŠΈ μž…λ ₯μΉΈ μŠ€νƒ€μΌ */
.large-prompt textarea {
    min-height: 120px !important;
    font-size: 15px !important;
    line-height: 1.5 !important;
    background: rgba(255, 255, 255, 0.9) !important;
    border: 2px solid rgba(233, 30, 99, 0.2) !important;
    border-radius: 12px !important;
    color: var(--text-primary) !important;
    transition: all 0.3s ease !important;
    padding: 1rem !important;
}

.large-prompt textarea:focus {
    border-color: var(--color-primary) !important;
    box-shadow: 0 0 0 3px rgba(233, 30, 99, 0.1) !important;
    outline: none !important;
}

.large-prompt textarea::placeholder {
    color: var(--text-secondary) !important;
    font-style: italic;
}

/* 생성 λ²„νŠΌ */
.small-generate-btn {
    max-width: 140px !important;
    height: 48px !important;
    font-size: 15px !important;
    padding: 12px 24px !important;
    border-radius: 12px !important;
    font-weight: 600 !important;
}

/* ν”„λ‘¬ν”„νŠΈ 증강 μ„Ήμ…˜ */
.prompt-enhance-section {
    background: linear-gradient(135deg, rgba(255, 183, 77, 0.1) 0%, rgba(252, 228, 236, 0.2) 100%);
    border: 1px solid rgba(255, 183, 77, 0.3);
    border-radius: var(--border-radius);
    padding: 1.2rem;
    margin-top: 1rem;
    box-shadow: var(--shadow-soft);
}

/* μŠ€νƒ€μΌ 프리셋 μ„Ήμ…˜ */
.style-preset-section {
    background: linear-gradient(135deg, rgba(248, 187, 217, 0.15) 0%, rgba(252, 228, 236, 0.2) 100%);
    border: 1px solid rgba(233, 30, 99, 0.2);
    border-radius: var(--border-radius);
    padding: 1.2rem;
    margin-top: 1rem;
    box-shadow: var(--shadow-soft);
}

/* 라벨 ν…μŠ€νŠΈ */
label {
    color: var(--text-primary) !important;
    font-weight: 600 !important;
    font-size: 0.95rem !important;
}

/* 정보 ν…μŠ€νŠΈ */
.gr-info, .gr-textbox-info {
    color: var(--text-secondary) !important;
    font-size: 0.85rem !important;
    line-height: 1.4 !important;
}

/* μ˜ˆμ‹œ λ§ˆν¬λ‹€μš΄ */
.example-region h3 {
    color: var(--text-primary) !important;
    font-weight: 600 !important;
    margin-bottom: 1rem !important;
}

/* 폼 μš”μ†Œλ“€ */
input[type="radio"], input[type="checkbox"] {
    accent-color: var(--color-primary) !important;
}

input[type="range"] {
    accent-color: var(--color-primary) !important;
}

/* κ²°κ³Ό 이미지 μ»¨ν…Œμ΄λ„ˆ */
.image-container {
    border-radius: var(--border-radius) !important;
    overflow: hidden !important;
    box-shadow: var(--shadow-medium) !important;
    background: rgba(255, 255, 255, 0.9) !important;
    border: 1px solid rgba(233, 30, 99, 0.1) !important;
}

/* μŠ¬λΌμ΄λ” μ»¨ν…Œμ΄λ„ˆ μŠ€νƒ€μΌλ§ */
.gr-slider {
    margin: 0.5rem 0 !important;
}

/* μ•„μ½”λ””μ–Έ μŠ€νƒ€μΌ */
.gr-accordion {
    border: 1px solid rgba(233, 30, 99, 0.15) !important;
    border-radius: var(--border-radius) !important;
    background: rgba(255, 255, 255, 0.7) !important;
}

.gr-accordion-header {
    background: var(--background-accent) !important;
    color: var(--color-primary) !important;
    font-weight: 600 !important;
    border-radius: var(--border-radius) var(--border-radius) 0 0 !important;
}

/* λΆ€λ“œλŸ¬μš΄ μ• λ‹ˆλ©”μ΄μ…˜ */
.model-description, .input-container, .prompt-enhance-section, .style-preset-section {
    animation: fadeInUp 0.4s ease-out;
}

@keyframes fadeInUp {
    from {
        opacity: 0;
        transform: translateY(20px);
    }
    to {
        opacity: 1;
        transform: translateY(0);
    }
}

/* 전체적인 ν…μŠ€νŠΈ 가독성 ν–₯상 */
* {
    -webkit-font-smoothing: antialiased;
    -moz-osx-font-smoothing: grayscale;
}

/* λ“œλ‘­λ‹€μš΄ 및 μ…€λ ‰νŠΈ μŠ€νƒ€μΌ */
select, .gr-dropdown {
    background: rgba(255, 255, 255, 0.9) !important;
    border: 1px solid rgba(233, 30, 99, 0.2) !important;
    border-radius: 8px !important;
    color: var(--text-primary) !important;
}

/* μ²΄ν¬λ°•μŠ€μ™€ λΌλ””μ˜€ λ²„νŠΌ κ°œμ„  */
.gr-checkbox, .gr-radio {
    background: transparent !important;
}

/* 전체 μ»¨ν…Œμ΄λ„ˆ μ—¬λ°± μ‘°μ • */
.gr-container {
    max-width: 1200px !important;
    margin: 0 auto !important;
    padding: 2rem 1rem !important;
}

/* λͺ¨λ°”일 λ°˜μ‘ν˜• */
@media (max-width: 768px) {
    .title {
        font-size: 2.2rem !important;
    }
    
    .model-description, .input-container, .advanced-settings, .example-region {
        padding: 1rem !important;
        margin: 1rem 0 !important;
    }
    
    .large-prompt textarea {
        min-height: 100px !important;
        font-size: 14px !important;
    }
}
"""

# ===== Gradio UI =====
def create_interface():
    with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
        with gr.Group(elem_classes="model-description"):
            gr.HTML("""
            <p>
            <strong>Mr. CHO CS</strong><br>
            <small style="opacity: 0.8;">λ³Έ λͺ¨λΈμ€ 연ꡬ λͺ©μ μœΌλ‘œ νŠΉμ •μΈμ˜ μ–Όκ΅΄κ³Ό μ™Έλͺ¨λ₯Ό LoRA 기술둜 ν•™μŠ΅ν•œ λͺ¨λΈμž…λ‹ˆλ‹€.λͺ©μ  μ™Έμ˜ μš©λ„λ‘œ 무단 μ‚¬μš©ν•˜μ§€ μ•Šλ„λ‘ μœ μ˜ν•΄ μ£Όμ„Έμš”. ν”„λ‘¬ν”„νŠΈμ— 'cho'을 ν¬ν•¨ν•˜μ—¬ μ£Όμ„Έμš”.</small><br><br>
            """)

        # ===== 메인 μž…λ ₯ =====
        with gr.Column():
            with gr.Row(elem_classes="input-container"):
                with gr.Column(scale=4):
                    user_prompt = gr.Text(
                        label="Prompt (ν”„λ‘¬ν”„νŠΈ)", 
                        max_lines=5, 
                        value=examples[0],
                        elem_classes="large-prompt",
                        placeholder="Enter your image description here... (이미지 μ„€λͺ…을 μž…λ ₯ν•˜μ„Έμš”...)"
                    )
                with gr.Column(scale=1):
                    run_button = gr.Button(
                        "Generate (생성)", 
                        variant="primary",
                        elem_classes="small-generate-btn"
                    )
            
            # ν”„λ‘¬ν”„νŠΈ 증강 μ˜΅μ…˜ (생성 λ²„νŠΌ μ•„λž˜)
            with gr.Group(elem_classes="prompt-enhance-section"):
                enhance_prompt_checkbox = gr.Checkbox(
                    label="πŸš€ Prompt Enhancement (ν”„λ‘¬ν”„νŠΈ 증강)", 
                    value=False,
                    info="Automatically improve your prompt using OpenAI API for high-quality image generation (OpenAI APIλ₯Ό μ‚¬μš©ν•˜μ—¬ κ³ ν’ˆμ§ˆ 이미지 생성을 μœ„ν•΄ ν”„λ‘¬ν”„νŠΈλ₯Ό μžλ™μœΌλ‘œ κ°œμ„ ν•©λ‹ˆλ‹€)"
                )
            
            # μŠ€νƒ€μΌ 프리셋 μ„Ήμ…˜
            with gr.Group(elem_classes="style-preset-section"):
                style_select = gr.Radio(
                    label="🎨 Style Preset (μŠ€νƒ€μΌ 프리셋)", 
                    choices=list(STYLE_PRESETS.keys()), 
                    value="None", 
                    interactive=True
                )

            result_image = gr.Image(label="Generated Image (μƒμ„±λœ 이미지)")
            seed_output = gr.Number(label="Seed (μ‹œλ“œκ°’)")

            # ===== κ³ κΈ‰ μ„€μ • =====
            with gr.Accordion("Advanced Settings (κ³ κΈ‰ μ„€μ •)", open=False, elem_classes="advanced-settings"):
                seed = gr.Slider(label="Seed (μ‹œλ“œκ°’)", minimum=0, maximum=MAX_SEED, step=1, value=42)
                randomize_seed = gr.Checkbox(label="Randomize seed (μ‹œλ“œκ°’ λ¬΄μž‘μœ„)", value=True)
                with gr.Row():
                    width = gr.Slider(label="Width (κ°€λ‘œ)", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
                    height = gr.Slider(label="Height (μ„Έλ‘œ)", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768)
                with gr.Row():
                    guidance_scale = gr.Slider(label="Guidance scale (κ°€μ΄λ˜μŠ€ μŠ€μΌ€μΌ)", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
                    num_inference_steps = gr.Slider(label="Inference steps (μΆ”λ‘  단계)", minimum=1, maximum=50, step=1, value=30)
                    lora_scale = gr.Slider(label="LoRA scale (LoRA μŠ€μΌ€μΌ)", minimum=0.0, maximum=1.0, step=0.1, value=1.0)

            # ===== μ˜ˆμ‹œ μ˜μ—­ =====
            with gr.Group(elem_classes="example-region"):
                gr.Markdown("### Examples (μ˜ˆμ‹œ)")
                gr.Examples(examples=examples, inputs=user_prompt, cache_examples=False)

        # ===== 이벀트 =====
        run_button.click(
            fn=generate_image,
            inputs=[
                user_prompt,
                style_select,
                enhance_prompt_checkbox,
                seed,
                randomize_seed,
                width,
                height,
                guidance_scale,
                num_inference_steps,
                lora_scale,
            ],
            outputs=[result_image, seed_output],
        )
    
    return demo

# ===== μ• ν”Œλ¦¬μΌ€μ΄μ…˜ μ‹€ν–‰ =====
if __name__ == "__main__":
    demo = create_interface()
    demo.queue()
    demo.launch()