chocs / app.py
seawolf2357's picture
Create app.py
cbdb263 verified
raw
history blame
23.3 kB
# ===== CRITICAL: Import spaces FIRST before any CUDA operations =====
try:
import spaces
HF_SPACES = True
except ImportError:
# If running locally, create a dummy decorator
def spaces_gpu_decorator(duration=60):
def decorator(func):
return func
return decorator
spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})()
HF_SPACES = False
print("Warning: Running without Hugging Face Spaces GPU allocation")
# ===== Now import other libraries =====
import random
import os
import uuid
import re
import time
from datetime import datetime
import gradio as gr
import numpy as np
import requests
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# ===== OpenAI ์„ค์ • =====
from openai import OpenAI
# Add error handling for API key
try:
client = OpenAI(api_key=os.getenv("LLM_API"))
except Exception as e:
print(f"Warning: OpenAI client initialization failed: {e}")
client = None
# ===== ํ”„๋กฌํ”„ํŠธ ์ฆ๊ฐ•์šฉ ์Šคํƒ€์ผ ํ”„๋ฆฌ์…‹ =====
STYLE_PRESETS = {
"None": "",
"Realistic Photo": "photorealistic, 8k, ultra-detailed, cinematic lighting, realistic skin texture",
"Oil Painting": "oil painting, rich brush strokes, canvas texture, baroque lighting",
"Comic Book": "comic book style, bold ink outlines, cel shading, vibrant colors",
"Watercolor": "watercolor illustration, soft gradients, splatter effect, pastel palette",
}
# ===== ์ €์žฅ ํด๋” =====
SAVE_DIR = "saved_images"
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
# ===== ๋””๋ฐ”์ด์Šค & ๋ชจ๋ธ ๋กœ๋“œ =====
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "seawolf2357/kim-korea"
# Add error handling for model loading
try:
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
pipeline = None
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# ===== ํ•œ๊ธ€ ์—ฌ๋ถ€ ํŒ๋ณ„ =====
HANGUL_RE = re.compile(r"[\u3131-\u318E\uAC00-\uD7A3]+")
def is_korean(text: str) -> bool:
return bool(HANGUL_RE.search(text))
# ===== ๋ฒˆ์—ญ & ์ฆ๊ฐ• ํ•จ์ˆ˜ =====
def openai_translate(text: str, retries: int = 3) -> str:
"""ํ•œ๊ธ€์„ ์˜์–ด๋กœ ๋ฒˆ์—ญ (OpenAI GPT-4o-mini ์‚ฌ์šฉ). ์˜์–ด ์ž…๋ ฅ์ด๋ฉด ๊ทธ๋Œ€๋กœ ๋ฐ˜ํ™˜."""
if not is_korean(text):
return text
if client is None:
print("Warning: OpenAI client not available, returning original text")
return text
for attempt in range(retries):
try:
res = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": "Translate the following Korean prompt into concise, descriptive English suitable for an image generation model. Keep the meaning, do not add new concepts."
},
{"role": "user", "content": text}
],
temperature=0.3,
max_tokens=256,
)
return res.choices[0].message.content.strip()
except Exception as e:
print(f"[translate] attempt {attempt + 1} failed: {e}")
time.sleep(2)
return text # ๋ฒˆ์—ญ ์‹คํŒจ ์‹œ ์›๋ฌธ ๊ทธ๋Œ€๋กœ
def enhance_prompt(text: str, retries: int = 3) -> str:
"""OpenAI๋ฅผ ํ†ตํ•ด ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ฆ๊ฐ•ํ•˜์—ฌ ๊ณ ํ’ˆ์งˆ ์ด๋ฏธ์ง€ ์ƒ์„ฑ์„ ์œ„ํ•œ ์ƒ์„ธํ•œ ์„ค๋ช…์œผ๋กœ ๋ณ€ํ™˜."""
if client is None:
print("Warning: OpenAI client not available, returning original text")
return text
for attempt in range(retries):
try:
res = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": """You are an expert prompt engineer for image generation models. Enhance the given prompt to create high-quality, detailed images.
Guidelines:
- Add specific visual details (lighting, composition, colors, textures)
- Include technical photography terms (depth of field, focal length, etc.)
- Add atmosphere and mood descriptors
- Specify image quality terms (4K, ultra-detailed, professional, etc.)
- Keep the core subject and meaning intact
- Make it comprehensive but not overly long
- Focus on visual elements that will improve image generation quality
Example:
Input: "A man giving a speech"
Output: "A professional man giving an inspiring speech at a podium, dramatic lighting with warm spotlights, confident posture and gestures, high-resolution 4K photography, sharp focus, cinematic composition, bokeh background with audience silhouettes, professional event setting, detailed facial expressions, realistic skin texture"
"""
},
{"role": "user", "content": f"Enhance this prompt for high-quality image generation: {text}"}
],
temperature=0.7,
max_tokens=512,
)
return res.choices[0].message.content.strip()
except Exception as e:
print(f"[enhance] attempt {attempt + 1} failed: {e}")
time.sleep(2)
return text # ์ฆ๊ฐ• ์‹คํŒจ ์‹œ ์›๋ฌธ ๊ทธ๋Œ€๋กœ
def prepare_prompt(user_prompt: str, style_key: str, enhance_prompt_enabled: bool = False) -> str:
"""ํ•œ๊ธ€์ด๋ฉด ๋ฒˆ์—ญํ•˜๊ณ , ํ”„๋กฌํ”„ํŠธ ์ฆ๊ฐ• ์˜ต์…˜์ด ํ™œ์„ฑํ™”๋˜๋ฉด ์ฆ๊ฐ•ํ•˜๊ณ , ์„ ํƒํ•œ ์Šคํƒ€์ผ ํ”„๋ฆฌ์…‹์„ ๋ถ™์—ฌ์„œ ์ตœ์ข… ํ”„๋กฌํ”„ํŠธ๋ฅผ ๋งŒ๋“ ๋‹ค."""
# 1. ๋ฒˆ์—ญ (ํ•œ๊ธ€์ธ ๊ฒฝ์šฐ)
prompt_en = openai_translate(user_prompt)
# 2. ํ”„๋กฌํ”„ํŠธ ์ฆ๊ฐ• (ํ™œ์„ฑํ™”๋œ ๊ฒฝ์šฐ)
if enhance_prompt_enabled:
prompt_en = enhance_prompt(prompt_en)
print(f"Enhanced prompt: {prompt_en}")
# 3. ์Šคํƒ€์ผ ํ”„๋ฆฌ์…‹ ์ ์šฉ
style_suffix = STYLE_PRESETS.get(style_key, "")
if style_suffix:
final_prompt = f"{prompt_en}, {style_suffix}"
else:
final_prompt = prompt_en
return final_prompt
# ===== ์ด๋ฏธ์ง€ ์ €์žฅ =====
def save_generated_image(image: Image.Image, prompt: str) -> str:
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
image.save(filepath)
# ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ €์žฅ
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
# ===== Diffusion ํ˜ธ์ถœ =====
def run_pipeline(prompt: str, seed: int, width: int, height: int, guidance_scale: float, num_steps: int, lora_scale: float):
if pipeline is None:
raise ValueError("Model pipeline not loaded")
generator = torch.Generator(device=device).manual_seed(int(seed))
result = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return result
# ===== Gradio inference ๋ž˜ํผ =====
@spaces.GPU(duration=60)
def generate_image(
user_prompt: str,
style_key: str,
enhance_prompt_enabled: bool = False,
seed: int = 42,
randomize_seed: bool = True,
width: int = 1024,
height: int = 768,
guidance_scale: float = 3.5,
num_inference_steps: int = 30,
lora_scale: float = 1.0,
progress=None,
):
try:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# 1) ๋ฒˆ์—ญ + ์ฆ๊ฐ•
final_prompt = prepare_prompt(user_prompt, style_key, enhance_prompt_enabled)
print(f"Final prompt: {final_prompt}")
# 2) ํŒŒ์ดํ”„๋ผ์ธ ํ˜ธ์ถœ
image = run_pipeline(final_prompt, seed, width, height, guidance_scale, num_inference_steps, lora_scale)
# 3) ์ €์žฅ
save_generated_image(image, final_prompt)
return image, seed
except Exception as e:
print(f"Error generating image: {e}")
# Return a placeholder or error message
error_image = Image.new('RGB', (width, height), color='red')
return error_image, seed
# ===== ์˜ˆ์‹œ ํ”„๋กฌํ”„ํŠธ (ํ•œ๊ตญ์–ด/์˜์–ด ํ˜ผ์šฉ ํ—ˆ์šฉ) =====
examples = [
"Mr. KIM์ด ๋‘ ์†์œผ๋กœ 'Fighting!' ํ˜„์ˆ˜๋ง‰์„ ๋“ค๊ณ  ์žˆ๋Š” ๋ชจ์Šต, ์• ๊ตญ์‹ฌ๊ณผ ๊ตญ๊ฐ€ ๋ฐœ์ „์— ๋Œ€ํ•œ ์˜์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",
"Mr. KIM์ด ์–‘ํŒ”์„ ๋“ค์–ด ์˜ฌ๋ฆฌ๋ฉฐ ์Šน๋ฆฌ์˜ ํ‘œ์ •์œผ๋กœ ํ™˜ํ˜ธํ•˜๋Š” ๋ชจ์Šต, ์Šน๋ฆฌ์™€ ๋ฏธ๋ž˜์— ๋Œ€ํ•œ ํฌ๋ง์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",
"Mr. KIM์ด ์šด๋™๋ณต์„ ์ž…๊ณ  ๊ณต์›์—์„œ ์กฐ๊น…ํ•˜๋Š” ๋ชจ์Šต, ๊ฑด๊ฐ•ํ•œ ์ƒํ™œ์Šต๊ด€๊ณผ ํ™œ๊ธฐ์ฐฌ ๋ฆฌ๋”์‹ญ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",
"Mr. KIM์ด ๋ถ๋น„๋Š” ๊ฑฐ๋ฆฌ์—์„œ ์—ฌ์„ฑ ์‹œ๋ฏผ๋“ค๊ณผ ๋”ฐ๋œปํ•˜๊ฒŒ ์•…์ˆ˜ํ•˜๋Š” ๋ชจ์Šต, ์—ฌ์„ฑ ์œ ๊ถŒ์ž๋“ค์— ๋Œ€ํ•œ ์ง„์ •ํ•œ ๊ด€์‹ฌ๊ณผ ์†Œํ†ต์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",
"Mr. KIM์ด ์„ ๊ฑฐ ์œ ์„ธ์žฅ์—์„œ ์ง€ํ‰์„ ์„ ํ–ฅํ•ด ์†๊ฐ€๋ฝ์œผ๋กœ ๊ฐ€๋ฆฌํ‚ค๋ฉฐ ์˜๊ฐ์„ ์ฃผ๋Š” ์ œ์Šค์ฒ˜๋ฅผ ์ทจํ•˜๊ณ  ์žˆ๊ณ , ์—ฌ์„ฑ๋“ค๊ณผ ์•„์ด๋“ค์ด ๋ฐ•์ˆ˜๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.",
"Mr. KIM์ด ์ง€์—ญ ํ–‰์‚ฌ์— ์ฐธ์—ฌํ•˜์—ฌ ์—ด์ •์ ์œผ๋กœ ์‘์›ํ•˜๋Š” ์—ฌ์„ฑ ์ง€์ง€์ž๋“ค์—๊ฒŒ ๋‘˜๋Ÿฌ์‹ธ์—ฌ ์žˆ๋Š” ๋ชจ์Šต.",
"Mr. KIM visiting a local market, engaging in friendly conversation with female vendors and shopkeepers.",
"Mr. KIM walking through a university campus, discussing education policies with female students and professors.",
"Mr. KIM delivering a powerful speech in front of a large crowd with confident gestures and determined expression.",
"Mr. KIM in a dynamic interview setting, passionately outlining his visions for the future.",
"Mr. KIM preparing for an important debate, surrounded by paperwork, looking focused and resolute.",
]
# ===== ์ปค์Šคํ…€ CSS (์ง„ํ•œ ๋ถ‰์€์ƒ‰ ๊ณ ๊ธ‰ ๋””์ž์ธ) =====
custom_css = """
:root {
--color-primary: #8F1A3A;
--color-secondary: #FF4B4B;
--color-accent: #B91C3C;
--color-dark-red: #7F1D1D;
--color-gold: #D4AF37;
--background-fill-primary: linear-gradient(135deg, #450A0A 0%, #7F1D1D 25%, #991B1B 50%, #B91C3C 75%, #DC2626 100%);
--glass-bg: rgba(255, 255, 255, 0.1);
--glass-border: rgba(255, 255, 255, 0.2);
--shadow-primary: 0 25px 50px -12px rgba(0, 0, 0, 0.5);
--shadow-secondary: 0 10px 25px -3px rgba(0, 0, 0, 0.3);
--shadow-accent: 0 4px 15px rgba(185, 28, 60, 0.4);
}
/* ์ „์ฒด ๋ฐฐ๊ฒฝ */
footer {visibility: hidden;}
.gradio-container {
background: var(--background-fill-primary) !important;
min-height: 100vh;
position: relative;
}
/* ๋ฐฐ๊ฒฝ์— ํŒจํ„ด ์ถ”๊ฐ€ */
.gradio-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
bottom: 0;
background-image:
radial-gradient(circle at 25% 25%, rgba(255, 255, 255, 0.1) 0%, transparent 50%),
radial-gradient(circle at 75% 75%, rgba(212, 175, 55, 0.1) 0%, transparent 50%);
pointer-events: none;
z-index: 1;
}
/* ๋ฉ”์ธ ์ฝ˜ํ…์ธ  z-index */
.gradio-container > * {
position: relative;
z-index: 2;
}
/* ํƒ€์ดํ‹€ ์Šคํƒ€์ผ */
.title {
color: #FFFFFF !important;
font-size: 3.5rem !important;
font-weight: 800 !important;
text-align: center;
margin: 2rem 0;
font-family: 'Playfair Display', serif;
text-shadow: 0 4px 8px rgba(0, 0, 0, 0.5);
background: linear-gradient(135deg, #FFFFFF 0%, var(--color-gold) 50%, #FFFFFF 100%);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;
}
.subtitle {
color: #F3F4F6 !important;
font-size: 1.3rem !important;
text-align: center;
margin-bottom: 2rem;
font-style: italic;
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.3);
}
.collection-link {
text-align: center;
margin-bottom: 2rem;
font-size: 1.1rem;
}
.collection-link a {
color: var(--color-gold);
text-decoration: none;
transition: all 0.3s ease;
font-weight: 600;
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.3);
}
.collection-link a:hover {
color: #F59E0B;
text-shadow: 0 4px 8px rgba(245, 158, 11, 0.5);
}
/* ๊ณ ๊ธ‰์Šค๋Ÿฌ์šด 3D ๋ฐ•์Šค ์Šคํƒ€์ผ */
.model-description {
background: linear-gradient(135deg, var(--glass-bg) 0%, rgba(255, 255, 255, 0.05) 100%);
backdrop-filter: blur(20px);
-webkit-backdrop-filter: blur(20px);
border: 1px solid var(--glass-border);
border-radius: 20px;
padding: 30px;
margin: 25px 0;
box-shadow:
var(--shadow-primary),
inset 0 1px 0 rgba(255, 255, 255, 0.2),
0 0 30px rgba(185, 28, 60, 0.2);
position: relative;
overflow: hidden;
transform: translateZ(0);
}
.model-description::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 1px;
background: linear-gradient(90deg, transparent, var(--color-gold), transparent);
}
.model-description p {
color: #F9FAFB !important;
font-size: 1.1rem;
line-height: 1.6;
text-shadow: 0 1px 2px rgba(0, 0, 0, 0.5);
}
/* ๋ฒ„ํŠผ ์Šคํƒ€์ผ */
button.primary {
background: linear-gradient(135deg, var(--color-primary) 0%, var(--color-accent) 100%) !important;
color: #FFFFFF !important;
border: none !important;
box-shadow:
var(--shadow-accent),
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
transition: all 0.3s ease !important;
font-weight: 600 !important;
text-transform: uppercase !important;
letter-spacing: 0.5px !important;
}
button.primary:hover {
transform: translateY(-3px) !important;
box-shadow:
0 20px 40px rgba(185, 28, 60, 0.4),
inset 0 1px 0 rgba(255, 255, 255, 0.2) !important;
background: linear-gradient(135deg, var(--color-accent) 0%, #DC2626 100%) !important;
}
/* ์ž…๋ ฅ ์ปจํ…Œ์ด๋„ˆ */
.input-container {
background: linear-gradient(135deg, var(--glass-bg) 0%, rgba(255, 255, 255, 0.08) 100%);
backdrop-filter: blur(25px);
-webkit-backdrop-filter: blur(25px);
border: 1px solid var(--glass-border);
border-radius: 20px;
padding: 25px;
margin-bottom: 2rem;
box-shadow: var(--shadow-secondary);
position: relative;
overflow: hidden;
}
.input-container::before {
content: '';
position: absolute;
top: 0;
left: 0;
right: 0;
height: 2px;
background: linear-gradient(90deg, var(--color-primary), var(--color-gold), var(--color-primary));
}
/* ๊ณ ๊ธ‰ ์„ค์ • */
.advanced-settings {
background: linear-gradient(135deg, rgba(0, 0, 0, 0.3) 0%, rgba(0, 0, 0, 0.1) 100%);
backdrop-filter: blur(15px);
-webkit-backdrop-filter: blur(15px);
border: 1px solid rgba(255, 255, 255, 0.1);
border-radius: 16px;
padding: 20px;
margin-top: 1.5rem;
box-shadow: var(--shadow-secondary);
}
/* ์˜ˆ์‹œ ์˜์—ญ */
.example-region {
background: linear-gradient(135deg, rgba(0, 0, 0, 0.2) 0%, rgba(0, 0, 0, 0.05) 100%);
backdrop-filter: blur(20px);
-webkit-backdrop-filter: blur(20px);
border: 1px solid rgba(255, 255, 255, 0.15);
border-radius: 16px;
padding: 20px;
margin-top: 1.5rem;
box-shadow: var(--shadow-secondary);
}
/* ํ”„๋กฌํ”„ํŠธ ์ž…๋ ฅ์นธ ํฌ๊ธฐ 2๋ฐฐ ์ฆ๊ฐ€ + ์Šคํƒ€์ผ */
.large-prompt textarea {
min-height: 120px !important;
font-size: 16px !important;
line-height: 1.5 !important;
background: rgba(0, 0, 0, 0.3) !important;
border: 2px solid rgba(255, 255, 255, 0.2) !important;
border-radius: 12px !important;
color: #FFFFFF !important;
backdrop-filter: blur(10px) !important;
transition: all 0.3s ease !important;
}
.large-prompt textarea:focus {
border-color: var(--color-gold) !important;
box-shadow: 0 0 20px rgba(212, 175, 55, 0.3) !important;
}
.large-prompt textarea::placeholder {
color: rgba(255, 255, 255, 0.6) !important;
}
/* ์ƒ์„ฑ ๋ฒ„ํŠผ ์ž‘๊ฒŒ ๋งŒ๋“ค๊ธฐ + 3D ํšจ๊ณผ */
.small-generate-btn {
max-width: 120px !important;
height: 45px !important;
font-size: 14px !important;
padding: 10px 20px !important;
border-radius: 12px !important;
position: relative !important;
overflow: hidden !important;
}
.small-generate-btn::before {
content: '';
position: absolute;
top: 0;
left: -100%;
width: 100%;
height: 100%;
background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent);
transition: left 0.5s ease;
}
.small-generate-btn:hover::before {
left: 100%;
}
/* ํ”„๋กฌํ”„ํŠธ ์ฆ๊ฐ• ์„น์…˜ ์Šคํƒ€์ผ */
.prompt-enhance-section {
background: linear-gradient(135deg, rgba(212, 175, 55, 0.15) 0%, rgba(212, 175, 55, 0.05) 100%);
backdrop-filter: blur(15px);
-webkit-backdrop-filter: blur(15px);
border: 1px solid rgba(212, 175, 55, 0.3);
border-radius: 15px;
padding: 20px;
margin-top: 15px;
box-shadow:
0 8px 25px rgba(0, 0, 0, 0.2),
inset 0 1px 0 rgba(255, 255, 255, 0.1);
position: relative;
}
.prompt-enhance-section::before {
content: '';
position: absolute;
top: 0;
left: 20px;
right: 20px;
height: 1px;
background: linear-gradient(90deg, transparent, var(--color-gold), transparent);
}
/* ์Šคํƒ€์ผ ํ”„๋ฆฌ์…‹ ์„น์…˜ */
.style-preset-section {
background: linear-gradient(135deg, rgba(255, 255, 255, 0.1) 0%, rgba(255, 255, 255, 0.05) 100%);
backdrop-filter: blur(15px);
-webkit-backdrop-filter: blur(15px);
border: 1px solid rgba(255, 255, 255, 0.2);
border-radius: 15px;
padding: 20px;
margin-top: 15px;
box-shadow: var(--shadow-secondary);
}
/* ๋ผ๋ฒจ ํ…์ŠคํŠธ ์ƒ‰์ƒ */
label {
color: #F9FAFB !important;
font-weight: 600 !important;
text-shadow: 0 1px 2px rgba(0, 0, 0, 0.5) !important;
}
/* ๋ผ๋””์˜ค ๋ฒ„ํŠผ ๋ฐ ์ฒดํฌ๋ฐ•์Šค ์Šคํƒ€์ผ */
input[type="radio"], input[type="checkbox"] {
accent-color: var(--color-gold) !important;
}
/* ์Šฌ๋ผ์ด๋” ์Šคํƒ€์ผ */
input[type="range"] {
accent-color: var(--color-gold) !important;
}
/* ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€ ์ปจํ…Œ์ด๋„ˆ */
.image-container {
border-radius: 16px !important;
overflow: hidden !important;
box-shadow: var(--shadow-primary) !important;
background: rgba(0, 0, 0, 0.3) !important;
backdrop-filter: blur(10px) !important;
}
/* ์• ๋‹ˆ๋ฉ”์ด์…˜ ์ถ”๊ฐ€ */
@keyframes shimmer {
0% { transform: translateX(-100%); }
100% { transform: translateX(100%); }
}
.model-description, .input-container, .prompt-enhance-section, .style-preset-section {
animation: fadeInUp 0.6s ease-out;
}
@keyframes fadeInUp {
from {
opacity: 0;
transform: translateY(30px);
}
to {
opacity: 1;
transform: translateY(0);
}
}
"""
# ===== Gradio UI =====
def create_interface():
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
gr.HTML('<div class="title">Mr. KIM in KOREA</div>')
gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>')
with gr.Group(elem_classes="model-description"):
gr.HTML("""
<p>
๋ณธ ๋ชจ๋ธ์€ ์—ฐ๊ตฌ ๋ชฉ์ ์œผ๋กœ ํŠน์ •์ธ์˜ ์–ผ๊ตด๊ณผ ์™ธ๋ชจ๋ฅผ ํ•™์Šตํ•œ LoRA ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.<br>
๋ชฉ์ ์™ธ์˜ ์šฉ๋„๋กœ ๋ฌด๋‹จ ์‚ฌ์šฉ ์•Š๋„๋ก ์œ ์˜ํ•ด ์ฃผ์„ธ์š”.<br>
(์˜ˆ์‹œ prompt ์‚ฌ์šฉ ์‹œ ๋ฐ˜๋“œ์‹œ 'kim'์„ ํฌํ•จํ•˜์—ฌ์•ผ ์ตœ์ ์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.)
</p>
""")
# ===== ๋ฉ”์ธ ์ž…๋ ฅ =====
with gr.Column():
with gr.Row(elem_classes="input-container"):
with gr.Column(scale=4):
user_prompt = gr.Text(
label="Prompt",
max_lines=5,
value=examples[0],
elem_classes="large-prompt"
)
with gr.Column(scale=1):
run_button = gr.Button(
"์ƒ์„ฑ",
variant="primary",
elem_classes="small-generate-btn"
)
# ํ”„๋กฌํ”„ํŠธ ์ฆ๊ฐ• ์˜ต์…˜ (์ƒ์„ฑ ๋ฒ„ํŠผ ์•„๋ž˜)
with gr.Group(elem_classes="prompt-enhance-section"):
enhance_prompt_checkbox = gr.Checkbox(
label="๐Ÿš€ ํ”„๋กฌํ”„ํŠธ ์ฆ๊ฐ• (AI๋กœ ํ”„๋กฌํ”„ํŠธ๋ฅผ ์ž๋™์œผ๋กœ ๊ฐœ์„ ํ•˜์—ฌ ๊ณ ํ’ˆ์งˆ ์ด๋ฏธ์ง€ ์ƒ์„ฑ)",
value=False,
info="OpenAI API๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ž…๋ ฅํ•œ ํ”„๋กฌํ”„ํŠธ๋ฅผ ๋”์šฑ ์ƒ์„ธํ•˜๊ณ  ๊ณ ํ’ˆ์งˆ์˜ ์ด๋ฏธ์ง€๋ฅผ ์ƒ์„ฑํ•  ์ˆ˜ ์žˆ๋„๋ก ์ž๋™์œผ๋กœ ์ฆ๊ฐ•ํ•ฉ๋‹ˆ๋‹ค."
)
# ์Šคํƒ€์ผ ํ”„๋ฆฌ์…‹ ์„น์…˜
with gr.Group(elem_classes="style-preset-section"):
style_select = gr.Radio(
label="๐ŸŽจ Style Preset",
choices=list(STYLE_PRESETS.keys()),
value="None",
interactive=True
)
result_image = gr.Image(label="Generated Image")
seed_output = gr.Number(label="Seed")
# ===== ๊ณ ๊ธ‰ ์„ค์ • =====
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768)
with gr.Row():
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=30)
lora_scale = gr.Slider(label="LoRA scale", minimum=0.0, maximum=1.0, step=0.1, value=1.0)
# ===== ์˜ˆ์‹œ ์˜์—ญ =====
with gr.Group(elem_classes="example-region"):
gr.Markdown("### Examples")
gr.Examples(examples=examples, inputs=user_prompt, cache_examples=False)
# ===== ์ด๋ฒคํŠธ =====
run_button.click(
fn=generate_image,
inputs=[
user_prompt,
style_select,
enhance_prompt_checkbox,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result_image, seed_output],
)
return demo
# ===== ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์‹คํ–‰ =====
if __name__ == "__main__":
demo = create_interface()
demo.queue()
demo.launch()