Create app-backup.py
Browse files- app-backup.py +280 -0
app-backup.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import os
|
3 |
+
import uuid
|
4 |
+
from datetime import datetime
|
5 |
+
import gradio as gr
|
6 |
+
import numpy as np
|
7 |
+
import spaces
|
8 |
+
import torch
|
9 |
+
from diffusers import DiffusionPipeline
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
# Create permanent storage directory
|
13 |
+
SAVE_DIR = "saved_images" # Gradio will handle the persistence
|
14 |
+
if not os.path.exists(SAVE_DIR):
|
15 |
+
os.makedirs(SAVE_DIR, exist_ok=True)
|
16 |
+
|
17 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
18 |
+
repo_id = "black-forest-labs/FLUX.1-dev"
|
19 |
+
adapter_id = "seawolf2357/kim-korea" # ํน์ ์ ์น์ธ์ ํ์ตํ LoRA ๋ชจ๋ธ
|
20 |
+
|
21 |
+
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
22 |
+
pipeline.load_lora_weights(adapter_id)
|
23 |
+
pipeline = pipeline.to(device)
|
24 |
+
|
25 |
+
MAX_SEED = np.iinfo(np.int32).max
|
26 |
+
MAX_IMAGE_SIZE = 1024
|
27 |
+
|
28 |
+
def save_generated_image(image, prompt):
|
29 |
+
# Generate unique filename with timestamp
|
30 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
31 |
+
unique_id = str(uuid.uuid4())[:8]
|
32 |
+
filename = f"{timestamp}_{unique_id}.png"
|
33 |
+
filepath = os.path.join(SAVE_DIR, filename)
|
34 |
+
|
35 |
+
# Save the image
|
36 |
+
image.save(filepath)
|
37 |
+
|
38 |
+
# Save metadata
|
39 |
+
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
|
40 |
+
with open(metadata_file, "a", encoding="utf-8") as f:
|
41 |
+
f.write(f"{filename}|{prompt}|{timestamp}\n")
|
42 |
+
|
43 |
+
return filepath
|
44 |
+
|
45 |
+
@spaces.GPU(duration=60)
|
46 |
+
def inference(
|
47 |
+
prompt,
|
48 |
+
seed=42,
|
49 |
+
randomize_seed=True,
|
50 |
+
width=1024,
|
51 |
+
height=768,
|
52 |
+
guidance_scale=3.5,
|
53 |
+
num_inference_steps=30,
|
54 |
+
lora_scale=1.0,
|
55 |
+
progress=None,
|
56 |
+
):
|
57 |
+
if randomize_seed:
|
58 |
+
seed = random.randint(0, MAX_SEED)
|
59 |
+
generator = torch.Generator(device=device).manual_seed(int(seed))
|
60 |
+
|
61 |
+
image = pipeline(
|
62 |
+
prompt=prompt,
|
63 |
+
guidance_scale=guidance_scale,
|
64 |
+
num_inference_steps=num_inference_steps,
|
65 |
+
width=width,
|
66 |
+
height=height,
|
67 |
+
generator=generator,
|
68 |
+
joint_attention_kwargs={"scale": lora_scale},
|
69 |
+
).images[0]
|
70 |
+
|
71 |
+
# Save the generated image
|
72 |
+
filepath = save_generated_image(image, prompt)
|
73 |
+
|
74 |
+
# Return just the image and seed
|
75 |
+
return image, seed
|
76 |
+
|
77 |
+
# ์์ ๋ฌธ๊ตฌ: ํน์ ์ ์น์ธ Mr. KIM์ ๋ค์ํ ์ํฉ์ ๋ฌ์ฌ
|
78 |
+
|
79 |
+
examples = [
|
80 |
+
"Mr. KIM holding up a 'Fighting!' banner with both hands, showing patriotic pride and determination for national excellence. ",
|
81 |
+
"Mr. KIM raising both arms in celebration with a triumphant expression, showing victory and hope for the future.",
|
82 |
+
"Mr. KIM jogging in a park wearing athletic gear, demonstrating healthy lifestyle and energetic leadership qualities.",
|
83 |
+
"Mr. KIM warmly shaking hands with female citizens in a crowded street, showing genuine care and connection with women voters. ",
|
84 |
+
"Mr. KIM at a campaign rally, pointing toward the horizon with an inspiring gesture while female and kids audience members applaud. ",
|
85 |
+
"Mr. KIM participating in a community event, surrounded by enthusiastic female supporters cheering ",
|
86 |
+
"Mr. KIM visiting a local market, engaging in friendly conversation with female vendors and shopkeepers. ",
|
87 |
+
"Mr. KIM walking through a university campus, discussing education policies with female students and professors. ",
|
88 |
+
"Mr. KIM delivering a powerful speech in front of a large crowd with confident gestures and determined expression. ",
|
89 |
+
"Mr. KIM in a dynamic interview setting, passionately outlining his visions for the future.",
|
90 |
+
"Mr. KIM preparing for an important debate, surrounded by paperwork, looking focused and resolute. ",
|
91 |
+
]
|
92 |
+
|
93 |
+
# UI๋ฅผ ๋ถ์ ๊ณ์ด ๊ทธ๋ผ๋์์ด์
์ผ๋ก ๋์์ธ
|
94 |
+
custom_css = """
|
95 |
+
:root {
|
96 |
+
--color-primary: #8F1A3A; /* ๋ถ์ ํค์ ๋ฉ์ธ ์ปฌ๋ฌ */
|
97 |
+
--color-secondary: #FF4B4B; /* ํฌ์ธํธ ์ปฌ๋ฌ(๋ฐ์ ๋นจ๊ฐ) */
|
98 |
+
--background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2);
|
99 |
+
}
|
100 |
+
footer {
|
101 |
+
visibility: hidden;
|
102 |
+
}
|
103 |
+
.gradio-container {
|
104 |
+
background: var(--background-fill-primary);
|
105 |
+
}
|
106 |
+
.title {
|
107 |
+
color: var(--color-primary) !important;
|
108 |
+
font-size: 3rem !important;
|
109 |
+
font-weight: 700 !important;
|
110 |
+
text-align: center;
|
111 |
+
margin: 1rem 0;
|
112 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.05);
|
113 |
+
font-family: 'Playfair Display', serif;
|
114 |
+
}
|
115 |
+
.subtitle {
|
116 |
+
color: #4A5568 !important;
|
117 |
+
font-size: 1.2rem !important;
|
118 |
+
text-align: center;
|
119 |
+
margin-bottom: 1.5rem;
|
120 |
+
font-style: italic;
|
121 |
+
}
|
122 |
+
.collection-link {
|
123 |
+
text-align: center;
|
124 |
+
margin-bottom: 2rem;
|
125 |
+
font-size: 1.1rem;
|
126 |
+
}
|
127 |
+
.collection-link a {
|
128 |
+
color: var(--color-primary);
|
129 |
+
text-decoration: underline;
|
130 |
+
transition: color 0.3s ease;
|
131 |
+
}
|
132 |
+
.collection-link a:hover {
|
133 |
+
color: var(--color-secondary);
|
134 |
+
}
|
135 |
+
.model-description {
|
136 |
+
background-color: rgba(255, 255, 255, 0.8);
|
137 |
+
border-radius: 12px;
|
138 |
+
padding: 24px;
|
139 |
+
margin: 20px 0;
|
140 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
|
141 |
+
border-left: 5px solid var(--color-primary);
|
142 |
+
}
|
143 |
+
button.primary {
|
144 |
+
background-color: var(--color-primary) !important;
|
145 |
+
transition: all 0.3s ease;
|
146 |
+
color: #fff !important;
|
147 |
+
}
|
148 |
+
button:hover {
|
149 |
+
transform: translateY(-2px);
|
150 |
+
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
|
151 |
+
}
|
152 |
+
.input-container {
|
153 |
+
border-radius: 10px;
|
154 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
|
155 |
+
background-color: rgba(255, 255, 255, 0.6);
|
156 |
+
padding: 20px;
|
157 |
+
margin-bottom: 1rem;
|
158 |
+
}
|
159 |
+
.advanced-settings {
|
160 |
+
margin-top: 1rem;
|
161 |
+
padding: 1rem;
|
162 |
+
border-radius: 10px;
|
163 |
+
background-color: rgba(255, 255, 255, 0.6);
|
164 |
+
}
|
165 |
+
.example-region {
|
166 |
+
background-color: rgba(255, 255, 255, 0.5);
|
167 |
+
border-radius: 10px;
|
168 |
+
padding: 1rem;
|
169 |
+
margin-top: 1rem;
|
170 |
+
}
|
171 |
+
"""
|
172 |
+
|
173 |
+
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
174 |
+
gr.HTML('<div class="title">Mr. KIM in KOREA</div>')
|
175 |
+
|
176 |
+
# ์ปฌ๋ ์
๋งํฌ ๋๋ ์๋ด๋ฌธ์ ํ์ ์ ์์ /์ญ์
|
177 |
+
gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>')
|
178 |
+
|
179 |
+
# ๋ชจ๋ธ ์ค๋ช
: ํน์ ์ ์น์ธ์ ๋ํ LoRA ๋ชจ๋ธ์์ ์ธ๊ธ
|
180 |
+
with gr.Group(elem_classes="model-description"):
|
181 |
+
gr.HTML("""
|
182 |
+
<p>
|
183 |
+
๋ณธ ๋ชจ๋ธ์ ์ฐ๊ตฌ ๋ชฉ์ ์ผ๋ก ํน์ ์ธ์ ์ผ๊ตด๊ณผ ์ธ๋ชจ๋ฅผ ํ์ตํ LoRA ๋ชจ๋ธ์
๋๋ค.<br>
|
184 |
+
๋ชฉ์ ์ธ์ ์ฉ๋๋ก ๋ฌด๋จ ์ฌ์ฉ ์๋๋ก ์ ์ํด ์ฃผ์ธ์.<br>
|
185 |
+
(์์ prompt ์ฌ์ฉ ์ ๋ฐ๋์ 'kim'์ ํฌํจํ์ฌ์ผ ์ต์ ์ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ์ ์์ต๋๋ค.)
|
186 |
+
</p>
|
187 |
+
""")
|
188 |
+
|
189 |
+
# ๋ฉ์ธ UI
|
190 |
+
with gr.Column(elem_id="col-container"):
|
191 |
+
with gr.Row(elem_classes="input-container"):
|
192 |
+
prompt = gr.Text(
|
193 |
+
label="Prompt",
|
194 |
+
max_lines=1,
|
195 |
+
placeholder="Enter your prompt (add [trigger] at the end)",
|
196 |
+
value=examples[0] # ๊ธฐ๋ณธ ์์
|
197 |
+
)
|
198 |
+
run_button = gr.Button("Generate", variant="primary", scale=0)
|
199 |
+
|
200 |
+
result = gr.Image(label="Generated Image")
|
201 |
+
seed_output = gr.Number(label="Seed", visible=True)
|
202 |
+
|
203 |
+
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
|
204 |
+
seed = gr.Slider(
|
205 |
+
label="Seed",
|
206 |
+
minimum=0,
|
207 |
+
maximum=MAX_SEED,
|
208 |
+
step=1,
|
209 |
+
value=42,
|
210 |
+
)
|
211 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
212 |
+
|
213 |
+
with gr.Row():
|
214 |
+
width = gr.Slider(
|
215 |
+
label="Width",
|
216 |
+
minimum=256,
|
217 |
+
maximum=MAX_IMAGE_SIZE,
|
218 |
+
step=32,
|
219 |
+
value=1024,
|
220 |
+
)
|
221 |
+
height = gr.Slider(
|
222 |
+
label="Height",
|
223 |
+
minimum=256,
|
224 |
+
maximum=MAX_IMAGE_SIZE,
|
225 |
+
step=32,
|
226 |
+
value=768,
|
227 |
+
)
|
228 |
+
|
229 |
+
with gr.Row():
|
230 |
+
guidance_scale = gr.Slider(
|
231 |
+
label="Guidance scale",
|
232 |
+
minimum=0.0,
|
233 |
+
maximum=10.0,
|
234 |
+
step=0.1,
|
235 |
+
value=3.5,
|
236 |
+
)
|
237 |
+
num_inference_steps = gr.Slider(
|
238 |
+
label="Number of inference steps",
|
239 |
+
minimum=1,
|
240 |
+
maximum=50,
|
241 |
+
step=1,
|
242 |
+
value=30,
|
243 |
+
)
|
244 |
+
lora_scale = gr.Slider(
|
245 |
+
label="LoRA scale",
|
246 |
+
minimum=0.0,
|
247 |
+
maximum=1.0,
|
248 |
+
step=0.1,
|
249 |
+
value=1.0,
|
250 |
+
)
|
251 |
+
|
252 |
+
with gr.Group(elem_classes="example-region"):
|
253 |
+
gr.Markdown("### Examples")
|
254 |
+
gr.Examples(
|
255 |
+
examples=examples,
|
256 |
+
inputs=prompt,
|
257 |
+
outputs=None, # Don't auto-run examples
|
258 |
+
fn=None, # No function to run for examples - just fill the prompt
|
259 |
+
cache_examples=False,
|
260 |
+
)
|
261 |
+
|
262 |
+
# ์ด๋ฒคํธ ํธ๋ค๋ฌ
|
263 |
+
gr.on(
|
264 |
+
triggers=[run_button.click, prompt.submit],
|
265 |
+
fn=inference,
|
266 |
+
inputs=[
|
267 |
+
prompt,
|
268 |
+
seed,
|
269 |
+
randomize_seed,
|
270 |
+
width,
|
271 |
+
height,
|
272 |
+
guidance_scale,
|
273 |
+
num_inference_steps,
|
274 |
+
lora_scale,
|
275 |
+
],
|
276 |
+
outputs=[result, seed_output],
|
277 |
+
)
|
278 |
+
|
279 |
+
demo.queue()
|
280 |
+
demo.launch()
|