Update app-backup.py
Browse files- app-backup.py +241 -227
app-backup.py
CHANGED
@@ -1,280 +1,294 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import random
|
2 |
import os
|
3 |
import uuid
|
|
|
|
|
4 |
from datetime import datetime
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
-
import
|
8 |
import torch
|
9 |
from diffusers import DiffusionPipeline
|
10 |
from PIL import Image
|
11 |
|
12 |
-
#
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
if not os.path.exists(SAVE_DIR):
|
15 |
os.makedirs(SAVE_DIR, exist_ok=True)
|
16 |
|
|
|
17 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
18 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
19 |
-
adapter_id = "seawolf2357/kim-korea"
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
pipeline =
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
MAX_SEED = np.iinfo(np.int32).max
|
26 |
MAX_IMAGE_SIZE = 1024
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
31 |
unique_id = str(uuid.uuid4())[:8]
|
32 |
filename = f"{timestamp}_{unique_id}.png"
|
33 |
filepath = os.path.join(SAVE_DIR, filename)
|
34 |
-
|
35 |
-
# Save the image
|
36 |
image.save(filepath)
|
37 |
-
|
38 |
-
#
|
39 |
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
|
40 |
with open(metadata_file, "a", encoding="utf-8") as f:
|
41 |
f.write(f"{filename}|{prompt}|{timestamp}\n")
|
42 |
-
|
43 |
return filepath
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
width=1024,
|
51 |
-
height=768,
|
52 |
-
guidance_scale=3.5,
|
53 |
-
num_inference_steps=30,
|
54 |
-
lora_scale=1.0,
|
55 |
-
progress=None,
|
56 |
-
):
|
57 |
-
if randomize_seed:
|
58 |
-
seed = random.randint(0, MAX_SEED)
|
59 |
-
generator = torch.Generator(device=device).manual_seed(int(seed))
|
60 |
|
61 |
-
|
|
|
62 |
prompt=prompt,
|
63 |
guidance_scale=guidance_scale,
|
64 |
-
num_inference_steps=
|
65 |
width=width,
|
66 |
height=height,
|
67 |
generator=generator,
|
68 |
joint_attention_kwargs={"scale": lora_scale},
|
69 |
).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
|
77 |
-
# ์์
|
78 |
|
79 |
examples = [
|
80 |
-
"Mr. KIM
|
81 |
-
"Mr. KIM
|
82 |
-
"Mr. KIM
|
83 |
-
"Mr. KIM
|
84 |
-
"Mr. KIM
|
85 |
-
"Mr. KIM
|
86 |
-
"Mr. KIM visiting a local market, engaging in friendly conversation with female vendors and shopkeepers.
|
87 |
-
"Mr. KIM walking through a university campus, discussing education policies with female students and professors.
|
88 |
-
"Mr. KIM delivering a powerful speech in front of a large crowd with confident gestures and determined expression.
|
89 |
"Mr. KIM in a dynamic interview setting, passionately outlining his visions for the future.",
|
90 |
-
"Mr. KIM preparing for an important debate, surrounded by paperwork, looking focused and resolute.
|
91 |
]
|
92 |
|
93 |
-
#
|
94 |
custom_css = """
|
95 |
:root {
|
96 |
-
--color-primary: #8F1A3A;
|
97 |
-
--color-secondary: #FF4B4B;
|
98 |
--background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2);
|
99 |
}
|
100 |
-
footer {
|
101 |
-
|
102 |
-
}
|
103 |
-
.
|
104 |
-
|
105 |
-
}
|
106 |
-
.
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
font-family: 'Playfair Display', serif;
|
114 |
-
}
|
115 |
-
.subtitle {
|
116 |
-
color: #4A5568 !important;
|
117 |
-
font-size: 1.2rem !important;
|
118 |
-
text-align: center;
|
119 |
-
margin-bottom: 1.5rem;
|
120 |
-
font-style: italic;
|
121 |
-
}
|
122 |
-
.collection-link {
|
123 |
-
text-align: center;
|
124 |
-
margin-bottom: 2rem;
|
125 |
-
font-size: 1.1rem;
|
126 |
-
}
|
127 |
-
.collection-link a {
|
128 |
-
color: var(--color-primary);
|
129 |
-
text-decoration: underline;
|
130 |
-
transition: color 0.3s ease;
|
131 |
-
}
|
132 |
-
.collection-link a:hover {
|
133 |
-
color: var(--color-secondary);
|
134 |
-
}
|
135 |
-
.model-description {
|
136 |
-
background-color: rgba(255, 255, 255, 0.8);
|
137 |
-
border-radius: 12px;
|
138 |
-
padding: 24px;
|
139 |
-
margin: 20px 0;
|
140 |
-
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
|
141 |
-
border-left: 5px solid var(--color-primary);
|
142 |
-
}
|
143 |
-
button.primary {
|
144 |
-
background-color: var(--color-primary) !important;
|
145 |
-
transition: all 0.3s ease;
|
146 |
-
color: #fff !important;
|
147 |
-
}
|
148 |
-
button:hover {
|
149 |
-
transform: translateY(-2px);
|
150 |
-
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
|
151 |
-
}
|
152 |
-
.input-container {
|
153 |
-
border-radius: 10px;
|
154 |
-
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
|
155 |
-
background-color: rgba(255, 255, 255, 0.6);
|
156 |
-
padding: 20px;
|
157 |
-
margin-bottom: 1rem;
|
158 |
-
}
|
159 |
-
.advanced-settings {
|
160 |
-
margin-top: 1rem;
|
161 |
-
padding: 1rem;
|
162 |
-
border-radius: 10px;
|
163 |
-
background-color: rgba(255, 255, 255, 0.6);
|
164 |
-
}
|
165 |
-
.example-region {
|
166 |
-
background-color: rgba(255, 255, 255, 0.5);
|
167 |
-
border-radius: 10px;
|
168 |
-
padding: 1rem;
|
169 |
-
margin-top: 1rem;
|
170 |
-
}
|
171 |
"""
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
with gr.Group(elem_classes="model-description"):
|
181 |
-
gr.HTML("""
|
182 |
-
<p>
|
183 |
-
๋ณธ ๋ชจ๋ธ์ ์ฐ๊ตฌ ๋ชฉ์ ์ผ๋ก ํน์ ์ธ์ ์ผ๊ตด๊ณผ ์ธ๋ชจ๋ฅผ ํ์ตํ LoRA ๋ชจ๋ธ์
๋๋ค.<br>
|
184 |
-
๋ชฉ์ ์ธ์ ์ฉ๋๋ก ๋ฌด๋จ ์ฌ์ฉ ์๋๋ก ์ ์ํด ์ฃผ์ธ์.<br>
|
185 |
-
(์์ prompt ์ฌ์ฉ ์ ๋ฐ๋์ 'kim'์ ํฌํจํ์ฌ์ผ ์ต์ ์ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ์ ์์ต๋๋ค.)
|
186 |
-
</p>
|
187 |
-
""")
|
188 |
-
|
189 |
-
# ๋ฉ์ธ UI
|
190 |
-
with gr.Column(elem_id="col-container"):
|
191 |
-
with gr.Row(elem_classes="input-container"):
|
192 |
-
prompt = gr.Text(
|
193 |
-
label="Prompt",
|
194 |
-
max_lines=1,
|
195 |
-
placeholder="Enter your prompt (add [trigger] at the end)",
|
196 |
-
value=examples[0] # ๊ธฐ๋ณธ ์์
|
197 |
-
)
|
198 |
-
run_button = gr.Button("Generate", variant="primary", scale=0)
|
199 |
-
|
200 |
-
result = gr.Image(label="Generated Image")
|
201 |
-
seed_output = gr.Number(label="Seed", visible=True)
|
202 |
-
|
203 |
-
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
|
204 |
-
seed = gr.Slider(
|
205 |
-
label="Seed",
|
206 |
-
minimum=0,
|
207 |
-
maximum=MAX_SEED,
|
208 |
-
step=1,
|
209 |
-
value=42,
|
210 |
-
)
|
211 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
212 |
-
|
213 |
-
with gr.Row():
|
214 |
-
width = gr.Slider(
|
215 |
-
label="Width",
|
216 |
-
minimum=256,
|
217 |
-
maximum=MAX_IMAGE_SIZE,
|
218 |
-
step=32,
|
219 |
-
value=1024,
|
220 |
-
)
|
221 |
-
height = gr.Slider(
|
222 |
-
label="Height",
|
223 |
-
minimum=256,
|
224 |
-
maximum=MAX_IMAGE_SIZE,
|
225 |
-
step=32,
|
226 |
-
value=768,
|
227 |
-
)
|
228 |
-
|
229 |
-
with gr.Row():
|
230 |
-
guidance_scale = gr.Slider(
|
231 |
-
label="Guidance scale",
|
232 |
-
minimum=0.0,
|
233 |
-
maximum=10.0,
|
234 |
-
step=0.1,
|
235 |
-
value=3.5,
|
236 |
-
)
|
237 |
-
num_inference_steps = gr.Slider(
|
238 |
-
label="Number of inference steps",
|
239 |
-
minimum=1,
|
240 |
-
maximum=50,
|
241 |
-
step=1,
|
242 |
-
value=30,
|
243 |
-
)
|
244 |
-
lora_scale = gr.Slider(
|
245 |
-
label="LoRA scale",
|
246 |
-
minimum=0.0,
|
247 |
-
maximum=1.0,
|
248 |
-
step=0.1,
|
249 |
-
value=1.0,
|
250 |
-
)
|
251 |
-
|
252 |
-
with gr.Group(elem_classes="example-region"):
|
253 |
-
gr.Markdown("### Examples")
|
254 |
-
gr.Examples(
|
255 |
-
examples=examples,
|
256 |
-
inputs=prompt,
|
257 |
-
outputs=None, # Don't auto-run examples
|
258 |
-
fn=None, # No function to run for examples - just fill the prompt
|
259 |
-
cache_examples=False,
|
260 |
-
)
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
prompt,
|
268 |
-
seed,
|
269 |
-
randomize_seed,
|
270 |
-
width,
|
271 |
-
height,
|
272 |
-
guidance_scale,
|
273 |
-
num_inference_steps,
|
274 |
-
lora_scale,
|
275 |
-
],
|
276 |
-
outputs=[result, seed_output],
|
277 |
-
)
|
278 |
-
|
279 |
-
demo.queue()
|
280 |
-
demo.launch()
|
|
|
1 |
+
# ===== CRITICAL: Import spaces FIRST before any CUDA operations =====
|
2 |
+
try:
|
3 |
+
import spaces
|
4 |
+
HF_SPACES = True
|
5 |
+
except ImportError:
|
6 |
+
# If running locally, create a dummy decorator
|
7 |
+
def spaces_gpu_decorator(duration=60):
|
8 |
+
def decorator(func):
|
9 |
+
return func
|
10 |
+
return decorator
|
11 |
+
spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})()
|
12 |
+
HF_SPACES = False
|
13 |
+
print("Warning: Running without Hugging Face Spaces GPU allocation")
|
14 |
+
|
15 |
+
# ===== Now import other libraries =====
|
16 |
import random
|
17 |
import os
|
18 |
import uuid
|
19 |
+
import re
|
20 |
+
import time
|
21 |
from datetime import datetime
|
22 |
+
|
23 |
import gradio as gr
|
24 |
import numpy as np
|
25 |
+
import requests
|
26 |
import torch
|
27 |
from diffusers import DiffusionPipeline
|
28 |
from PIL import Image
|
29 |
|
30 |
+
# ===== OpenAI ์ค์ =====
|
31 |
+
from openai import OpenAI
|
32 |
+
|
33 |
+
# Add error handling for API key
|
34 |
+
try:
|
35 |
+
client = OpenAI(api_key=os.getenv("LLM_API"))
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Warning: OpenAI client initialization failed: {e}")
|
38 |
+
client = None
|
39 |
+
|
40 |
+
# ===== ํ๋กฌํํธ ์ฆ๊ฐ์ฉ ์คํ์ผ ํ๋ฆฌ์
=====
|
41 |
+
STYLE_PRESETS = {
|
42 |
+
"None": "",
|
43 |
+
"Realistic Photo": "photorealistic, 8k, ultra-detailed, cinematic lighting, realistic skin texture",
|
44 |
+
"Oil Painting": "oil painting, rich brush strokes, canvas texture, baroque lighting",
|
45 |
+
"Comic Book": "comic book style, bold ink outlines, cel shading, vibrant colors",
|
46 |
+
"Watercolor": "watercolor illustration, soft gradients, splatter effect, pastel palette",
|
47 |
+
}
|
48 |
+
|
49 |
+
# ===== ์ ์ฅ ํด๋ =====
|
50 |
+
SAVE_DIR = "saved_images"
|
51 |
if not os.path.exists(SAVE_DIR):
|
52 |
os.makedirs(SAVE_DIR, exist_ok=True)
|
53 |
|
54 |
+
# ===== ๋๋ฐ์ด์ค & ๋ชจ๋ธ ๋ก๋ =====
|
55 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
56 |
+
print(f"Using device: {device}")
|
57 |
+
|
58 |
repo_id = "black-forest-labs/FLUX.1-dev"
|
59 |
+
adapter_id = "seawolf2357/kim-korea"
|
60 |
|
61 |
+
# Add error handling for model loading
|
62 |
+
try:
|
63 |
+
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
64 |
+
pipeline.load_lora_weights(adapter_id)
|
65 |
+
pipeline = pipeline.to(device)
|
66 |
+
print("Model loaded successfully")
|
67 |
+
except Exception as e:
|
68 |
+
print(f"Error loading model: {e}")
|
69 |
+
pipeline = None
|
70 |
|
71 |
MAX_SEED = np.iinfo(np.int32).max
|
72 |
MAX_IMAGE_SIZE = 1024
|
73 |
|
74 |
+
# ===== ํ๊ธ ์ฌ๋ถ ํ๋ณ =====
|
75 |
+
HANGUL_RE = re.compile(r"[\u3131-\u318E\uAC00-\uD7A3]+")
|
76 |
+
|
77 |
+
def is_korean(text: str) -> bool:
|
78 |
+
return bool(HANGUL_RE.search(text))
|
79 |
+
|
80 |
+
# ===== ๋ฒ์ญ & ์ฆ๊ฐ ํจ์ =====
|
81 |
+
|
82 |
+
def openai_translate(text: str, retries: int = 3) -> str:
|
83 |
+
"""ํ๊ธ์ ์์ด๋ก ๋ฒ์ญ (OpenAI GPT-4o-mini ์ฌ์ฉ). ์์ด ์
๋ ฅ์ด๋ฉด ๊ทธ๋๋ก ๋ฐํ."""
|
84 |
+
if not is_korean(text):
|
85 |
+
return text
|
86 |
+
|
87 |
+
if client is None:
|
88 |
+
print("Warning: OpenAI client not available, returning original text")
|
89 |
+
return text
|
90 |
+
|
91 |
+
for attempt in range(retries):
|
92 |
+
try:
|
93 |
+
res = client.chat.completions.create(
|
94 |
+
model="gpt-4o-mini",
|
95 |
+
messages=[
|
96 |
+
{
|
97 |
+
"role": "system",
|
98 |
+
"content": "Translate the following Korean prompt into concise, descriptive English suitable for an image generation model. Keep the meaning, do not add new concepts."
|
99 |
+
},
|
100 |
+
{"role": "user", "content": text}
|
101 |
+
],
|
102 |
+
temperature=0.3,
|
103 |
+
max_tokens=256,
|
104 |
+
)
|
105 |
+
return res.choices[0].message.content.strip()
|
106 |
+
except Exception as e:
|
107 |
+
print(f"[translate] attempt {attempt + 1} failed: {e}")
|
108 |
+
time.sleep(2)
|
109 |
+
return text # ๋ฒ์ญ ์คํจ ์ ์๋ฌธ ๊ทธ๋๋ก
|
110 |
+
|
111 |
+
def prepare_prompt(user_prompt: str, style_key: str) -> str:
|
112 |
+
"""ํ๊ธ์ด๋ฉด ๋ฒ์ญํ๊ณ , ์ ํํ ์คํ์ผ ํ๋ฆฌ์
์ ๋ถ์ฌ์ ์ต์ข
ํ๋กฌํํธ๋ฅผ ๋ง๋ ๋ค."""
|
113 |
+
prompt_en = openai_translate(user_prompt)
|
114 |
+
style_suffix = STYLE_PRESETS.get(style_key, "")
|
115 |
+
if style_suffix:
|
116 |
+
final_prompt = f"{prompt_en}, {style_suffix}"
|
117 |
+
else:
|
118 |
+
final_prompt = prompt_en
|
119 |
+
return final_prompt
|
120 |
+
|
121 |
+
# ===== ์ด๋ฏธ์ง ์ ์ฅ =====
|
122 |
+
|
123 |
+
def save_generated_image(image: Image.Image, prompt: str) -> str:
|
124 |
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
125 |
unique_id = str(uuid.uuid4())[:8]
|
126 |
filename = f"{timestamp}_{unique_id}.png"
|
127 |
filepath = os.path.join(SAVE_DIR, filename)
|
|
|
|
|
128 |
image.save(filepath)
|
129 |
+
|
130 |
+
# ๋ฉํ๋ฐ์ดํฐ ์ ์ฅ
|
131 |
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
|
132 |
with open(metadata_file, "a", encoding="utf-8") as f:
|
133 |
f.write(f"{filename}|{prompt}|{timestamp}\n")
|
|
|
134 |
return filepath
|
135 |
|
136 |
+
# ===== Diffusion ํธ์ถ =====
|
137 |
+
|
138 |
+
def run_pipeline(prompt: str, seed: int, width: int, height: int, guidance_scale: float, num_steps: int, lora_scale: float):
|
139 |
+
if pipeline is None:
|
140 |
+
raise ValueError("Model pipeline not loaded")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
generator = torch.Generator(device=device).manual_seed(int(seed))
|
143 |
+
result = pipeline(
|
144 |
prompt=prompt,
|
145 |
guidance_scale=guidance_scale,
|
146 |
+
num_inference_steps=num_steps,
|
147 |
width=width,
|
148 |
height=height,
|
149 |
generator=generator,
|
150 |
joint_attention_kwargs={"scale": lora_scale},
|
151 |
).images[0]
|
152 |
+
return result
|
153 |
+
|
154 |
+
# ===== Gradio inference ๋ํผ =====
|
155 |
+
|
156 |
+
@spaces.GPU(duration=60)
|
157 |
+
def generate_image(
|
158 |
+
user_prompt: str,
|
159 |
+
style_key: str,
|
160 |
+
seed: int = 42,
|
161 |
+
randomize_seed: bool = True,
|
162 |
+
width: int = 1024,
|
163 |
+
height: int = 768,
|
164 |
+
guidance_scale: float = 3.5,
|
165 |
+
num_inference_steps: int = 30,
|
166 |
+
lora_scale: float = 1.0,
|
167 |
+
progress=None,
|
168 |
+
):
|
169 |
+
try:
|
170 |
+
if randomize_seed:
|
171 |
+
seed = random.randint(0, MAX_SEED)
|
172 |
+
|
173 |
+
# 1) ๋ฒ์ญ + ์ฆ๊ฐ
|
174 |
+
final_prompt = prepare_prompt(user_prompt, style_key)
|
175 |
+
print(f"Final prompt: {final_prompt}")
|
176 |
+
|
177 |
+
# 2) ํ์ดํ๋ผ์ธ ํธ์ถ
|
178 |
+
image = run_pipeline(final_prompt, seed, width, height, guidance_scale, num_inference_steps, lora_scale)
|
179 |
+
|
180 |
+
# 3) ์ ์ฅ
|
181 |
+
save_generated_image(image, final_prompt)
|
182 |
+
|
183 |
+
return image, seed
|
184 |
|
185 |
+
except Exception as e:
|
186 |
+
print(f"Error generating image: {e}")
|
187 |
+
# Return a placeholder or error message
|
188 |
+
error_image = Image.new('RGB', (width, height), color='red')
|
189 |
+
return error_image, seed
|
190 |
|
191 |
+
# ===== ์์ ํ๋กฌํํธ (ํ๊ตญ์ด/์์ด ํผ์ฉ ํ์ฉ) =====
|
192 |
|
193 |
examples = [
|
194 |
+
"Mr. KIM์ด ๋ ์์ผ๋ก 'Fighting!' ํ์๋ง์ ๋ค๊ณ ์๋ ๋ชจ์ต, ์ ๊ตญ์ฌ๊ณผ ๊ตญ๊ฐ ๋ฐ์ ์ ๋ํ ์์ง๋ฅผ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.",
|
195 |
+
"Mr. KIM์ด ์ํ์ ๋ค์ด ์ฌ๋ฆฌ๋ฉฐ ์น๋ฆฌ์ ํ์ ์ผ๋ก ํํธํ๋ ๋ชจ์ต, ์น๋ฆฌ์ ๋ฏธ๋์ ๋ํ ํฌ๋ง์ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.",
|
196 |
+
"Mr. KIM์ด ์ด๋๋ณต์ ์
๊ณ ๊ณต์์์ ์กฐ๊น
ํ๋ ๋ชจ์ต, ๊ฑด๊ฐํ ์ํ์ต๊ด๊ณผ ํ๊ธฐ์ฐฌ ๋ฆฌ๋์ญ์ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.",
|
197 |
+
"Mr. KIM์ด ๋ถ๋น๋ ๊ฑฐ๋ฆฌ์์ ์ฌ์ฑ ์๋ฏผ๋ค๊ณผ ๋ฐ๋ปํ๊ฒ ์
์ํ๋ ๋ชจ์ต, ์ฌ์ฑ ์ ๊ถ์๋ค์ ๋ํ ์ง์ ํ ๊ด์ฌ๊ณผ ์ํต์ ๋ณด์ฌ์ฃผ๊ณ ์๋ค.",
|
198 |
+
"Mr. KIM์ด ์ ๊ฑฐ ์ ์ธ์ฅ์์ ์งํ์ ์ ํฅํด ์๊ฐ๋ฝ์ผ๋ก ๊ฐ๋ฆฌํค๋ฉฐ ์๊ฐ์ ์ฃผ๋ ์ ์ค์ฒ๋ฅผ ์ทจํ๊ณ ์๊ณ , ์ฌ์ฑ๋ค๊ณผ ์์ด๋ค์ด ๋ฐ์๋ฅผ ์น๊ณ ์๋ค.",
|
199 |
+
"Mr. KIM์ด ์ง์ญ ํ์ฌ์ ์ฐธ์ฌํ์ฌ ์ด์ ์ ์ผ๋ก ์์ํ๋ ์ฌ์ฑ ์ง์ง์๋ค์๊ฒ ๋๋ฌ์ธ์ฌ ์๋ ๋ชจ์ต.",
|
200 |
+
"Mr. KIM visiting a local market, engaging in friendly conversation with female vendors and shopkeepers.",
|
201 |
+
"Mr. KIM walking through a university campus, discussing education policies with female students and professors.",
|
202 |
+
"Mr. KIM delivering a powerful speech in front of a large crowd with confident gestures and determined expression.",
|
203 |
"Mr. KIM in a dynamic interview setting, passionately outlining his visions for the future.",
|
204 |
+
"Mr. KIM preparing for an important debate, surrounded by paperwork, looking focused and resolute.",
|
205 |
]
|
206 |
|
207 |
+
# ===== ์ปค์คํ
CSS (๋ถ์ ํค ์ ์ง) =====
|
208 |
custom_css = """
|
209 |
:root {
|
210 |
+
--color-primary: #8F1A3A;
|
211 |
+
--color-secondary: #FF4B4B;
|
212 |
--background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2);
|
213 |
}
|
214 |
+
footer {visibility: hidden;}
|
215 |
+
.gradio-container {background: var(--background-fill-primary);}
|
216 |
+
.title {color: var(--color-primary)!important; font-size:3rem!important; font-weight:700!important; text-align:center; margin:1rem 0; font-family:'Playfair Display',serif;}
|
217 |
+
.subtitle {color:#4A5568!important; font-size:1.2rem!important; text-align:center; margin-bottom:1.5rem; font-style:italic;}
|
218 |
+
.collection-link {text-align:center; margin-bottom:2rem; font-size:1.1rem;}
|
219 |
+
.collection-link a {color:var(--color-primary); text-decoration:underline; transition:color .3s ease;}
|
220 |
+
.collection-link a:hover {color:var(--color-secondary);}
|
221 |
+
.model-description{background:rgba(255,255,255,.8); border-radius:12px; padding:24px; margin:20px 0; box-shadow:0 4px 12px rgba(0,0,0,.05); border-left:5px solid var(--color-primary);}
|
222 |
+
button.primary{background:var(--color-primary)!important; color:#fff!important; transition:all .3s ease;}
|
223 |
+
button:hover{transform:translateY(-2px); box-shadow:0 5px 15px rgba(0,0,0,.1);}
|
224 |
+
.input-container{border-radius:10px; box-shadow:0 2px 8px rgba(0,0,0,.05); background:rgba(255,255,255,.6); padding:20px; margin-bottom:1rem;}
|
225 |
+
.advanced-settings{margin-top:1rem; padding:1rem; border-radius:10px; background:rgba(255,255,255,.6);}
|
226 |
+
.example-region{background:rgba(255,255,255,.5); border-radius:10px; padding:1rem; margin-top:1rem;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
"""
|
228 |
|
229 |
+
# ===== Gradio UI =====
|
230 |
+
def create_interface():
|
231 |
+
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
|
232 |
+
gr.HTML('<div class="title">Mr. KIM in KOREA</div>')
|
233 |
+
gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>')
|
234 |
+
|
235 |
+
with gr.Group(elem_classes="model-description"):
|
236 |
+
gr.HTML("""
|
237 |
+
<p>
|
238 |
+
๋ณธ ๋ชจ๋ธ์ ์ฐ๊ตฌ ๋ชฉ์ ์ผ๋ก ํน์ ์ธ์ ์ผ๊ตด๊ณผ ์ธ๋ชจ๋ฅผ ํ์ตํ LoRA ๋ชจ๋ธ์
๋๋ค.<br>
|
239 |
+
๋ชฉ์ ์ธ์ ์ฉ๋๋ก ๋ฌด๋จ ์ฌ์ฉ ์๋๋ก ์ ์ํด ์ฃผ์ธ์.<br>
|
240 |
+
(์์ prompt ์ฌ์ฉ ์ ๋ฐ๋์ 'kim'์ ํฌํจํ์ฌ์ผ ์ต์ ์ ๊ฒฐ๊ณผ๋ฅผ ์ป์ ์ ์์ต๋๋ค.)
|
241 |
+
</p>
|
242 |
+
""")
|
243 |
+
|
244 |
+
# ===== ๋ฉ์ธ ์
๋ ฅ =====
|
245 |
+
with gr.Column():
|
246 |
+
with gr.Row(elem_classes="input-container"):
|
247 |
+
user_prompt = gr.Text(label="Prompt", max_lines=1, value=examples[0])
|
248 |
+
style_select = gr.Radio(label="Style Preset", choices=list(STYLE_PRESETS.keys()), value="None", interactive=True)
|
249 |
+
run_button = gr.Button("Generate", variant="primary")
|
250 |
+
|
251 |
+
result_image = gr.Image(label="Generated Image")
|
252 |
+
seed_output = gr.Number(label="Seed")
|
253 |
+
|
254 |
+
# ===== ๊ณ ๊ธ ์ค์ =====
|
255 |
+
with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
|
256 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
257 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
258 |
+
with gr.Row():
|
259 |
+
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
260 |
+
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768)
|
261 |
+
with gr.Row():
|
262 |
+
guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
|
263 |
+
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=30)
|
264 |
+
lora_scale = gr.Slider(label="LoRA scale", minimum=0.0, maximum=1.0, step=0.1, value=1.0)
|
265 |
+
|
266 |
+
# ===== ์์ ์์ญ =====
|
267 |
+
with gr.Group(elem_classes="example-region"):
|
268 |
+
gr.Markdown("### Examples")
|
269 |
+
gr.Examples(examples=examples, inputs=user_prompt, cache_examples=False)
|
270 |
+
|
271 |
+
# ===== ์ด๋ฒคํธ =====
|
272 |
+
run_button.click(
|
273 |
+
fn=generate_image,
|
274 |
+
inputs=[
|
275 |
+
user_prompt,
|
276 |
+
style_select,
|
277 |
+
seed,
|
278 |
+
randomize_seed,
|
279 |
+
width,
|
280 |
+
height,
|
281 |
+
guidance_scale,
|
282 |
+
num_inference_steps,
|
283 |
+
lora_scale,
|
284 |
+
],
|
285 |
+
outputs=[result_image, seed_output],
|
286 |
+
)
|
287 |
|
288 |
+
return demo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
+
# ===== ์ ํ๋ฆฌ์ผ์ด์
์คํ =====
|
291 |
+
if __name__ == "__main__":
|
292 |
+
demo = create_interface()
|
293 |
+
demo.queue()
|
294 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|