seawolf2357 commited on
Commit
f7e4c70
ยท
verified ยท
1 Parent(s): a1f53eb

Delete app-backup.py

Browse files
Files changed (1) hide show
  1. app-backup.py +0 -294
app-backup.py DELETED
@@ -1,294 +0,0 @@
1
- # ===== CRITICAL: Import spaces FIRST before any CUDA operations =====
2
- try:
3
- import spaces
4
- HF_SPACES = True
5
- except ImportError:
6
- # If running locally, create a dummy decorator
7
- def spaces_gpu_decorator(duration=60):
8
- def decorator(func):
9
- return func
10
- return decorator
11
- spaces = type('spaces', (), {'GPU': spaces_gpu_decorator})()
12
- HF_SPACES = False
13
- print("Warning: Running without Hugging Face Spaces GPU allocation")
14
-
15
- # ===== Now import other libraries =====
16
- import random
17
- import os
18
- import uuid
19
- import re
20
- import time
21
- from datetime import datetime
22
-
23
- import gradio as gr
24
- import numpy as np
25
- import requests
26
- import torch
27
- from diffusers import DiffusionPipeline
28
- from PIL import Image
29
-
30
- # ===== OpenAI ์„ค์ • =====
31
- from openai import OpenAI
32
-
33
- # Add error handling for API key
34
- try:
35
- client = OpenAI(api_key=os.getenv("LLM_API"))
36
- except Exception as e:
37
- print(f"Warning: OpenAI client initialization failed: {e}")
38
- client = None
39
-
40
- # ===== ํ”„๋กฌํ”„ํŠธ ์ฆ๊ฐ•์šฉ ์Šคํƒ€์ผ ํ”„๋ฆฌ์…‹ =====
41
- STYLE_PRESETS = {
42
- "None": "",
43
- "Realistic Photo": "photorealistic, 8k, ultra-detailed, cinematic lighting, realistic skin texture",
44
- "Oil Painting": "oil painting, rich brush strokes, canvas texture, baroque lighting",
45
- "Comic Book": "comic book style, bold ink outlines, cel shading, vibrant colors",
46
- "Watercolor": "watercolor illustration, soft gradients, splatter effect, pastel palette",
47
- }
48
-
49
- # ===== ์ €์žฅ ํด๋” =====
50
- SAVE_DIR = "saved_images"
51
- if not os.path.exists(SAVE_DIR):
52
- os.makedirs(SAVE_DIR, exist_ok=True)
53
-
54
- # ===== ๋””๋ฐ”์ด์Šค & ๋ชจ๋ธ ๋กœ๋“œ =====
55
- device = "cuda" if torch.cuda.is_available() else "cpu"
56
- print(f"Using device: {device}")
57
-
58
- repo_id = "black-forest-labs/FLUX.1-dev"
59
- adapter_id = "seawolf2357/kim-korea"
60
-
61
- # Add error handling for model loading
62
- try:
63
- pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
64
- pipeline.load_lora_weights(adapter_id)
65
- pipeline = pipeline.to(device)
66
- print("Model loaded successfully")
67
- except Exception as e:
68
- print(f"Error loading model: {e}")
69
- pipeline = None
70
-
71
- MAX_SEED = np.iinfo(np.int32).max
72
- MAX_IMAGE_SIZE = 1024
73
-
74
- # ===== ํ•œ๊ธ€ ์—ฌ๋ถ€ ํŒ๋ณ„ =====
75
- HANGUL_RE = re.compile(r"[\u3131-\u318E\uAC00-\uD7A3]+")
76
-
77
- def is_korean(text: str) -> bool:
78
- return bool(HANGUL_RE.search(text))
79
-
80
- # ===== ๋ฒˆ์—ญ & ์ฆ๊ฐ• ํ•จ์ˆ˜ =====
81
-
82
- def openai_translate(text: str, retries: int = 3) -> str:
83
- """ํ•œ๊ธ€์„ ์˜์–ด๋กœ ๋ฒˆ์—ญ (OpenAI GPT-4o-mini ์‚ฌ์šฉ). ์˜์–ด ์ž…๋ ฅ์ด๋ฉด ๊ทธ๋Œ€๋กœ ๋ฐ˜ํ™˜."""
84
- if not is_korean(text):
85
- return text
86
-
87
- if client is None:
88
- print("Warning: OpenAI client not available, returning original text")
89
- return text
90
-
91
- for attempt in range(retries):
92
- try:
93
- res = client.chat.completions.create(
94
- model="gpt-4o-mini",
95
- messages=[
96
- {
97
- "role": "system",
98
- "content": "Translate the following Korean prompt into concise, descriptive English suitable for an image generation model. Keep the meaning, do not add new concepts."
99
- },
100
- {"role": "user", "content": text}
101
- ],
102
- temperature=0.3,
103
- max_tokens=256,
104
- )
105
- return res.choices[0].message.content.strip()
106
- except Exception as e:
107
- print(f"[translate] attempt {attempt + 1} failed: {e}")
108
- time.sleep(2)
109
- return text # ๋ฒˆ์—ญ ์‹คํŒจ ์‹œ ์›๋ฌธ ๊ทธ๋Œ€๋กœ
110
-
111
- def prepare_prompt(user_prompt: str, style_key: str) -> str:
112
- """ํ•œ๊ธ€์ด๋ฉด ๋ฒˆ์—ญํ•˜๊ณ , ์„ ํƒํ•œ ์Šคํƒ€์ผ ํ”„๋ฆฌ์…‹์„ ๋ถ™์—ฌ์„œ ์ตœ์ข… ํ”„๋กฌํ”„ํŠธ๋ฅผ ๋งŒ๋“ ๋‹ค."""
113
- prompt_en = openai_translate(user_prompt)
114
- style_suffix = STYLE_PRESETS.get(style_key, "")
115
- if style_suffix:
116
- final_prompt = f"{prompt_en}, {style_suffix}"
117
- else:
118
- final_prompt = prompt_en
119
- return final_prompt
120
-
121
- # ===== ์ด๋ฏธ์ง€ ์ €์žฅ =====
122
-
123
- def save_generated_image(image: Image.Image, prompt: str) -> str:
124
- timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
125
- unique_id = str(uuid.uuid4())[:8]
126
- filename = f"{timestamp}_{unique_id}.png"
127
- filepath = os.path.join(SAVE_DIR, filename)
128
- image.save(filepath)
129
-
130
- # ๋ฉ”ํƒ€๋ฐ์ดํ„ฐ ์ €์žฅ
131
- metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
132
- with open(metadata_file, "a", encoding="utf-8") as f:
133
- f.write(f"{filename}|{prompt}|{timestamp}\n")
134
- return filepath
135
-
136
- # ===== Diffusion ํ˜ธ์ถœ =====
137
-
138
- def run_pipeline(prompt: str, seed: int, width: int, height: int, guidance_scale: float, num_steps: int, lora_scale: float):
139
- if pipeline is None:
140
- raise ValueError("Model pipeline not loaded")
141
-
142
- generator = torch.Generator(device=device).manual_seed(int(seed))
143
- result = pipeline(
144
- prompt=prompt,
145
- guidance_scale=guidance_scale,
146
- num_inference_steps=num_steps,
147
- width=width,
148
- height=height,
149
- generator=generator,
150
- joint_attention_kwargs={"scale": lora_scale},
151
- ).images[0]
152
- return result
153
-
154
- # ===== Gradio inference ๋ž˜ํผ =====
155
-
156
- @spaces.GPU(duration=60)
157
- def generate_image(
158
- user_prompt: str,
159
- style_key: str,
160
- seed: int = 42,
161
- randomize_seed: bool = True,
162
- width: int = 1024,
163
- height: int = 768,
164
- guidance_scale: float = 3.5,
165
- num_inference_steps: int = 30,
166
- lora_scale: float = 1.0,
167
- progress=None,
168
- ):
169
- try:
170
- if randomize_seed:
171
- seed = random.randint(0, MAX_SEED)
172
-
173
- # 1) ๋ฒˆ์—ญ + ์ฆ๊ฐ•
174
- final_prompt = prepare_prompt(user_prompt, style_key)
175
- print(f"Final prompt: {final_prompt}")
176
-
177
- # 2) ํŒŒ์ดํ”„๋ผ์ธ ํ˜ธ์ถœ
178
- image = run_pipeline(final_prompt, seed, width, height, guidance_scale, num_inference_steps, lora_scale)
179
-
180
- # 3) ์ €์žฅ
181
- save_generated_image(image, final_prompt)
182
-
183
- return image, seed
184
-
185
- except Exception as e:
186
- print(f"Error generating image: {e}")
187
- # Return a placeholder or error message
188
- error_image = Image.new('RGB', (width, height), color='red')
189
- return error_image, seed
190
-
191
- # ===== ์˜ˆ์‹œ ํ”„๋กฌํ”„ํŠธ (ํ•œ๊ตญ์–ด/์˜์–ด ํ˜ผ์šฉ ํ—ˆ์šฉ) =====
192
-
193
- examples = [
194
- "Mr. KIM์ด ๋‘ ์†์œผ๋กœ 'Fighting!' ํ˜„์ˆ˜๋ง‰์„ ๋“ค๊ณ  ์žˆ๋Š” ๋ชจ์Šต, ์• ๊ตญ์‹ฌ๊ณผ ๊ตญ๊ฐ€ ๋ฐœ์ „์— ๋Œ€ํ•œ ์˜์ง€๋ฅผ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",
195
- "Mr. KIM์ด ์–‘ํŒ”์„ ๋“ค์–ด ์˜ฌ๋ฆฌ๋ฉฐ ์Šน๋ฆฌ์˜ ํ‘œ์ •์œผ๋กœ ํ™˜ํ˜ธํ•˜๋Š” ๋ชจ์Šต, ์Šน๋ฆฌ์™€ ๋ฏธ๋ž˜์— ๋Œ€ํ•œ ํฌ๋ง์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",
196
- "Mr. KIM์ด ์šด๋™๋ณต์„ ์ž…๊ณ  ๊ณต์›์—์„œ ์กฐ๊น…ํ•˜๋Š” ๋ชจ์Šต, ๊ฑด๊ฐ•ํ•œ ์ƒํ™œ์Šต๊ด€๊ณผ ํ™œ๊ธฐ์ฐฌ ๋ฆฌ๋”์‹ญ์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",
197
- "Mr. KIM์ด ๋ถ๋น„๋Š” ๊ฑฐ๋ฆฌ์—์„œ ์—ฌ์„ฑ ์‹œ๋ฏผ๋“ค๊ณผ ๋”ฐ๋œปํ•˜๊ฒŒ ์•…์ˆ˜ํ•˜๋Š” ๋ชจ์Šต, ์—ฌ์„ฑ ์œ ๊ถŒ์ž๋“ค์— ๋Œ€ํ•œ ์ง„์ •ํ•œ ๊ด€์‹ฌ๊ณผ ์†Œํ†ต์„ ๋ณด์—ฌ์ฃผ๊ณ  ์žˆ๋‹ค.",
198
- "Mr. KIM์ด ์„ ๊ฑฐ ์œ ์„ธ์žฅ์—์„œ ์ง€ํ‰์„ ์„ ํ–ฅํ•ด ์†๊ฐ€๋ฝ์œผ๋กœ ๊ฐ€๋ฆฌํ‚ค๋ฉฐ ์˜๊ฐ์„ ์ฃผ๋Š” ์ œ์Šค์ฒ˜๋ฅผ ์ทจํ•˜๊ณ  ์žˆ๊ณ , ์—ฌ์„ฑ๋“ค๊ณผ ์•„์ด๋“ค์ด ๋ฐ•์ˆ˜๋ฅผ ์น˜๊ณ  ์žˆ๋‹ค.",
199
- "Mr. KIM์ด ์ง€์—ญ ํ–‰์‚ฌ์— ์ฐธ์—ฌํ•˜์—ฌ ์—ด์ •์ ์œผ๋กœ ์‘์›ํ•˜๋Š” ์—ฌ์„ฑ ์ง€์ง€์ž๋“ค์—๊ฒŒ ๋‘˜๋Ÿฌ์‹ธ์—ฌ ์žˆ๋Š” ๋ชจ์Šต.",
200
- "Mr. KIM visiting a local market, engaging in friendly conversation with female vendors and shopkeepers.",
201
- "Mr. KIM walking through a university campus, discussing education policies with female students and professors.",
202
- "Mr. KIM delivering a powerful speech in front of a large crowd with confident gestures and determined expression.",
203
- "Mr. KIM in a dynamic interview setting, passionately outlining his visions for the future.",
204
- "Mr. KIM preparing for an important debate, surrounded by paperwork, looking focused and resolute.",
205
- ]
206
-
207
- # ===== ์ปค์Šคํ…€ CSS (๋ถ‰์€ ํ†ค ์œ ์ง€) =====
208
- custom_css = """
209
- :root {
210
- --color-primary: #8F1A3A;
211
- --color-secondary: #FF4B4B;
212
- --background-fill-primary: linear-gradient(to right, #FFF5F5, #FED7D7, #FEB2B2);
213
- }
214
- footer {visibility: hidden;}
215
- .gradio-container {background: var(--background-fill-primary);}
216
- .title {color: var(--color-primary)!important; font-size:3rem!important; font-weight:700!important; text-align:center; margin:1rem 0; font-family:'Playfair Display',serif;}
217
- .subtitle {color:#4A5568!important; font-size:1.2rem!important; text-align:center; margin-bottom:1.5rem; font-style:italic;}
218
- .collection-link {text-align:center; margin-bottom:2rem; font-size:1.1rem;}
219
- .collection-link a {color:var(--color-primary); text-decoration:underline; transition:color .3s ease;}
220
- .collection-link a:hover {color:var(--color-secondary);}
221
- .model-description{background:rgba(255,255,255,.8); border-radius:12px; padding:24px; margin:20px 0; box-shadow:0 4px 12px rgba(0,0,0,.05); border-left:5px solid var(--color-primary);}
222
- button.primary{background:var(--color-primary)!important; color:#fff!important; transition:all .3s ease;}
223
- button:hover{transform:translateY(-2px); box-shadow:0 5px 15px rgba(0,0,0,.1);}
224
- .input-container{border-radius:10px; box-shadow:0 2px 8px rgba(0,0,0,.05); background:rgba(255,255,255,.6); padding:20px; margin-bottom:1rem;}
225
- .advanced-settings{margin-top:1rem; padding:1rem; border-radius:10px; background:rgba(255,255,255,.6);}
226
- .example-region{background:rgba(255,255,255,.5); border-radius:10px; padding:1rem; margin-top:1rem;}
227
- """
228
-
229
- # ===== Gradio UI =====
230
- def create_interface():
231
- with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
232
- gr.HTML('<div class="title">Mr. KIM in KOREA</div>')
233
- gr.HTML('<div class="collection-link"><a href="https://huggingface.co/collections/openfree/painting-art-ai-681453484ec15ef5978bbeb1" target="_blank">Visit the LoRA Model Collection</a></div>')
234
-
235
- with gr.Group(elem_classes="model-description"):
236
- gr.HTML("""
237
- <p>
238
- ๋ณธ ๋ชจ๋ธ์€ ์—ฐ๊ตฌ ๋ชฉ์ ์œผ๋กœ ํŠน์ •์ธ์˜ ์–ผ๊ตด๊ณผ ์™ธ๋ชจ๋ฅผ ํ•™์Šตํ•œ LoRA ๋ชจ๋ธ์ž…๋‹ˆ๋‹ค.<br>
239
- ๋ชฉ์ ์™ธ์˜ ์šฉ๋„๋กœ ๋ฌด๋‹จ ์‚ฌ์šฉ ์•Š๋„๋ก ์œ ์˜ํ•ด ์ฃผ์„ธ์š”.<br>
240
- (์˜ˆ์‹œ prompt ์‚ฌ์šฉ ์‹œ ๋ฐ˜๋“œ์‹œ 'kim'์„ ํฌํ•จํ•˜์—ฌ์•ผ ์ตœ์ ์˜ ๊ฒฐ๊ณผ๋ฅผ ์–ป์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค.)
241
- </p>
242
- """)
243
-
244
- # ===== ๋ฉ”์ธ ์ž…๋ ฅ =====
245
- with gr.Column():
246
- with gr.Row(elem_classes="input-container"):
247
- user_prompt = gr.Text(label="Prompt", max_lines=1, value=examples[0])
248
- style_select = gr.Radio(label="Style Preset", choices=list(STYLE_PRESETS.keys()), value="None", interactive=True)
249
- run_button = gr.Button("Generate", variant="primary")
250
-
251
- result_image = gr.Image(label="Generated Image")
252
- seed_output = gr.Number(label="Seed")
253
-
254
- # ===== ๊ณ ๊ธ‰ ์„ค์ • =====
255
- with gr.Accordion("Advanced Settings", open=False, elem_classes="advanced-settings"):
256
- seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
257
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
258
- with gr.Row():
259
- width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
260
- height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=768)
261
- with gr.Row():
262
- guidance_scale = gr.Slider(label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=3.5)
263
- num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=50, step=1, value=30)
264
- lora_scale = gr.Slider(label="LoRA scale", minimum=0.0, maximum=1.0, step=0.1, value=1.0)
265
-
266
- # ===== ์˜ˆ์‹œ ์˜์—ญ =====
267
- with gr.Group(elem_classes="example-region"):
268
- gr.Markdown("### Examples")
269
- gr.Examples(examples=examples, inputs=user_prompt, cache_examples=False)
270
-
271
- # ===== ์ด๋ฒคํŠธ =====
272
- run_button.click(
273
- fn=generate_image,
274
- inputs=[
275
- user_prompt,
276
- style_select,
277
- seed,
278
- randomize_seed,
279
- width,
280
- height,
281
- guidance_scale,
282
- num_inference_steps,
283
- lora_scale,
284
- ],
285
- outputs=[result_image, seed_output],
286
- )
287
-
288
- return demo
289
-
290
- # ===== ์• ํ”Œ๋ฆฌ์ผ€์ด์…˜ ์‹คํ–‰ =====
291
- if __name__ == "__main__":
292
- demo = create_interface()
293
- demo.queue()
294
- demo.launch()