File size: 18,493 Bytes
e146909
 
 
 
 
 
c20a702
e146909
c20a702
e146909
 
c20a702
 
 
 
e146909
 
 
 
f41b58f
c20a702
e146909
 
 
c20a702
 
e146909
 
 
c20a702
 
 
 
 
 
 
e146909
 
 
 
c20a702
e146909
 
 
 
 
 
 
 
c20a702
e146909
 
 
 
 
 
c20a702
e146909
 
 
c0e7580
e146909
 
 
 
47154ea
e96f400
47154ea
 
 
 
 
 
 
 
 
 
 
 
 
 
e146909
 
 
 
 
 
c6f871c
c0e7580
c20a702
e146909
 
 
8bb102d
e146909
 
 
 
 
 
 
 
 
 
 
 
 
8bb102d
 
e146909
 
 
8bb102d
 
 
 
 
bc8dd39
e146909
 
 
 
 
 
8bb102d
42824a3
 
e146909
42824a3
e146909
c6f871c
 
a8ca9e4
 
 
 
e146909
a8ca9e4
e146909
a8ca9e4
 
 
 
 
 
 
 
e146909
 
 
a8ca9e4
e146909
a8ca9e4
e146909
a8ca9e4
e146909
 
 
a8ca9e4
 
f41b58f
c20a702
 
 
 
 
 
f41b58f
c20a702
 
62151c8
 
 
c20a702
e146909
 
 
c20a702
e146909
 
 
 
 
 
 
 
c20a702
e146909
 
 
 
 
 
 
 
c20a702
 
e146909
 
43c9440
e146909
 
 
 
c20a702
 
e146909
 
43c9440
e146909
c20a702
e146909
 
 
62151c8
 
e146909
 
43c9440
e146909
 
 
 
c20a702
e146909
 
c20a702
 
e146909
 
 
c20a702
62151c8
c20a702
43c9440
 
 
e146909
 
747633e
43c9440
c20a702
 
62151c8
 
 
 
bc8dd39
e146909
 
c20a702
 
e6f9650
c20a702
e6f9650
0292eb7
e146909
 
62151c8
 
e146909
152624c
e146909
 
c20a702
 
e146909
 
 
 
 
 
 
42824a3
e146909
 
 
42824a3
e146909
 
 
 
 
 
 
 
 
 
 
f6b6dd7
e146909
 
42824a3
355ac45
e146909
 
 
 
 
 
 
 
355ac45
e146909
 
 
 
355ac45
e146909
 
 
 
 
 
 
355ac45
e146909
 
 
 
 
 
355ac45
e146909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355ac45
e146909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355ac45
e146909
 
 
 
 
 
 
 
 
 
 
 
8bb102d
e146909
8bb102d
 
e146909
bc8dd39
8bb102d
 
 
e146909
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c90aa74
e146909
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# ===========================================
# IP-Composer 🌅✚🖌️ – FULL IMPROVED UI SCRIPT
# (기존 기능 그대로, UI·테마·레이아웃·갤러리 강화)
# ===========================================

import os, json, random, gc
import numpy as np
import torch
from PIL import Image
import gradio as gr
from gradio.themes import Soft                                  # ★ NEW
from diffusers import StableDiffusionXLPipeline
import open_clip
from huggingface_hub import hf_hub_download
from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL
from IP_Composer.perform_swap import (compute_dataset_embeds_svd,
                                      get_modified_images_embeds_composition)
from IP_Composer.generate_text_embeddings import (load_descriptions,
                                                  generate_embeddings)
import spaces

# ─────────────────────────────
# 1 · Device
# ─────────────────────────────
device = "cuda" if torch.cuda.is_available() else "cpu"

# ─────────────────────────────
# 2 · Stable-Diffusion XL
# ─────────────────────────────
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    add_watermarker=False,
)

# ─────────────────────────────
# 3 · IP-Adapter
# ─────────────────────────────
image_encoder_repo      = 'h94/IP-Adapter'
image_encoder_subfolder = 'models/image_encoder'
ip_ckpt = hf_hub_download(
    'h94/IP-Adapter',
    subfolder="sdxl_models",
    filename='ip-adapter_sdxl_vit-h.bin'
)
ip_model = IPAdapterXL(pipe, image_encoder_repo,
                       image_encoder_subfolder,
                       ip_ckpt, device)

# ─────────────────────────────
# 4 · CLIP
# ─────────────────────────────
clip_model, _, preprocess = open_clip.create_model_and_transforms(
    'hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K'
)
clip_model.to(device)
tokenizer = open_clip.get_tokenizer(
    'hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K'
)

# ─────────────────────────────
# 5 · Concept maps
# ─────────────────────────────
CONCEPTS_MAP = {
    "age": "age_descriptions.npy",
    "animal fur": "fur_descriptions.npy",
    "dogs": "dog_descriptions.npy",
    "emotions": "emotion_descriptions.npy",
    "flowers": "flower_descriptions.npy",
    "fruit/vegtable": "fruit_vegetable_descriptions.npy",
    "outfit type": "outfit_descriptions.npy",
    "outfit pattern (including color)": "outfit_pattern_descriptions.npy",
    "patterns": "pattern_descriptions.npy",
    "patterns (including color)": "pattern_descriptions_with_colors.npy",
    "vehicle": "vehicle_descriptions.npy",
    "daytime": "times_of_day_descriptions.npy",
    "pose": "person_poses_descriptions.npy",
    "season": "season_descriptions.npy",
    "material": "material_descriptions_with_gems.npy"
}
RANKS_MAP = {
    "age": 30, "animal fur": 80, "dogs": 30, "emotions": 30,
    "flowers": 30, "fruit/vegtable": 30, "outfit type": 30,
    "outfit pattern (including color)": 80, "patterns": 80,
    "patterns (including color)": 80, "vehicle": 30,
    "daytime": 30, "pose": 30, "season": 30, "material": 80
}
concept_options = list(CONCEPTS_MAP.keys())

# ─────────────────────────────
# 6 · Example tuples (base_img, c1_img, …)
# ─────────────────────────────
examples = [
    ['./IP_Composer/assets/patterns/base.jpg',
     './IP_Composer/assets/patterns/pattern.png',
     'patterns (including color)', None, None, None, None,
     80, 30, 30, None, 1.0, 0, 30],
    ['./IP_Composer/assets/flowers/base.png',
     './IP_Composer/assets/flowers/concept.png',
     'flowers', None, None, None, None,
     30, 30, 30, None, 1.0, 0, 30],
    ['./IP_Composer/assets/materials/base.png',
     './IP_Composer/assets/materials/concept.jpg',
     'material', None, None, None, None,
     80, 30, 30, None, 1.0, 0, 30],
    # … (생략 없이 추가 가능)
]

# ----------------------------------------------------------
# 7 · Utility functions (unchanged except docstring tweaks)
# ----------------------------------------------------------
def generate_examples(base_image, 
                      concept_image1, concept_name1,
                      concept_image2, concept_name2,
                      concept_image3, concept_name3,
                      rank1, rank2, rank3, 
                      prompt, scale, seed, num_inference_steps):
    return process_and_display(base_image,
                               concept_image1, concept_name1,
                               concept_image2, concept_name2,
                               concept_image3, concept_name3,
                               rank1, rank2, rank3,
                               prompt, scale, seed, num_inference_steps)

MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    return random.randint(0, MAX_SEED) if randomize_seed else seed

def change_rank_default(concept_name):             # rank 자동 조정
    return RANKS_MAP.get(concept_name, 30)

@spaces.GPU
def match_image_to_concept(image):
    if image is None:
        return None
    img_pil   = Image.fromarray(image).convert("RGB")
    img_embed = get_image_embeds(img_pil, clip_model, preprocess, device)

    similarities = {}
    for concept_name, concept_file in CONCEPTS_MAP.items():
        try:
            embeds_path = f"./IP_Composer/text_embeddings/{concept_file}"
            with open(embeds_path, "rb") as f:
                concept_embeds = np.load(f)
            sim_scores = []
            for embed in concept_embeds:
                sim = np.dot(img_embed.flatten()/np.linalg.norm(img_embed),
                             embed.flatten()/np.linalg.norm(embed))
                sim_scores.append(sim)
            sim_scores.sort(reverse=True)
            similarities[concept_name] = np.mean(sim_scores[:5])
        except Exception as e:
            print(f"Concept {concept_name} error: {e}")
    if similarities:
        detected = max(similarities, key=similarities.get)
        gr.Info(f"Image automatically matched to concept: {detected}")
        return detected
    return None

@spaces.GPU
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
    image = preproc(pil_image)[np.newaxis, :, :, :]
    with torch.no_grad():
        embeds = model.encode_image(image.to(dev))
    return embeds.cpu().detach().numpy()

@spaces.GPU
def process_images(
    base_image, 
    concept_image1, concept_name1,
    concept_image2=None, concept_name2=None,
    concept_image3=None, concept_name3=None,
    rank1=10, rank2=10, rank3=10,
    prompt=None, scale=1.0, seed=420, num_inference_steps=50,
    concpet_from_file_1=None, concpet_from_file_2=None, concpet_from_file_3=None,
    use_concpet_from_file_1=False, use_concpet_from_file_2=False, use_concpet_from_file_3=False
):
    base_pil  = Image.fromarray(base_image).convert("RGB")
    base_embed = get_image_embeds(base_pil, clip_model, preprocess, device)

    concept_images, concept_descs, ranks = [], [], []
    skip = [False, False, False]

    # ─── concept 1
    if concept_image1 is None:
        return None, "Please upload at least one concept image"
    concept_images.append(concept_image1)
    if use_concpet_from_file_1 and concpet_from_file_1 is not None:
        concept_descs.append(concpet_from_file_1); skip[0] = True
    else:
        concept_descs.append(CONCEPTS_MAP[concept_name1])
    ranks.append(rank1)

    # ─── concept 2
    if concept_image2 is not None:
        concept_images.append(concept_image2)
        if use_concpet_from_file_2 and concpet_from_file_2 is not None:
            concept_descs.append(concpet_from_file_2); skip[1] = True
        else:
            concept_descs.append(CONCEPTS_MAP[concept_name2])
        ranks.append(rank2)

    # ─── concept 3
    if concept_image3 is not None:
        concept_images.append(concept_image3)
        if use_concpet_from_file_3 and concpet_from_file_3 is not None:
            concept_descs.append(concpet_from_file_3); skip[2] = True
        else:
            concept_descs.append(CONCEPTS_MAP[concept_name3])
        ranks.append(rank3)

    concept_embeds, proj_mats = [], []
    for i, concept in enumerate(concept_descs):
        img_pil = Image.fromarray(concept_images[i]).convert("RGB")
        concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
        if skip[i]:
            all_embeds = concept
        else:
            with open(f"./IP_Composer/text_embeddings/{concept}", "rb") as f:
                all_embeds = np.load(f)
        proj_mats.append(compute_dataset_embeds_svd(all_embeds, ranks[i]))

    projections_data = [
        {"embed": e, "projection_matrix": p}
        for e, p in zip(concept_embeds, proj_mats)
    ]
    modified_images = get_modified_images_embeds_composition(
        base_embed, projections_data, ip_model,
        prompt=prompt, scale=scale,
        num_samples=1, seed=seed, num_inference_steps=num_inference_steps
    )
    return modified_images[0]

@spaces.GPU
def get_text_embeddings(concept_file):
    descriptions = load_descriptions(concept_file) 
    embeddings   = generate_embeddings(descriptions, clip_model,
                                       tokenizer, device, batch_size=100)
    return embeddings, True

def process_and_display(
    base_image, 
    concept_image1, concept_name1="age",
    concept_image2=None, concept_name2=None,
    concept_image3=None, concept_name3=None,
    rank1=30, rank2=30, rank3=30,
    prompt=None, scale=1.0, seed=0, num_inference_steps=50,
    concpet_from_file_1=None, concpet_from_file_2=None, concpet_from_file_3=None,
    use_concpet_from_file_1=False, use_concpet_from_file_2=False, use_concpet_from_file_3=False
):
    if base_image is None:
        raise gr.Error("Please upload a base image")
    if concept_image1 is None:
        raise gr.Error("Choose at least one concept image")

    return process_images(
        base_image, concept_image1, concept_name1,
        concept_image2, concept_name2,
        concept_image3, concept_name3,
        rank1, rank2, rank3,
        prompt, scale, seed, num_inference_steps,
        concpet_from_file_1, concpet_from_file_2, concpet_from_file_3,
        use_concpet_from_file_1, use_concpet_from_file_2, use_concpet_from_file_3
    )

# ----------------------------------------------------------
# 8 · 💄 THEME & CSS UPGRADE
# ----------------------------------------------------------
demo_theme = Soft(                                           # ★ NEW
    primary_hue="purple",
    font=[gr.themes.GoogleFont("Inter")]
)
css = """
body{
   background:#0f0c29;
   background:linear-gradient(135deg,#0f0c29,#302b63,#24243e);
}
#header{ text-align:center;
         padding:24px 0 8px;
         font-weight:700;
         font-size:2.1rem;
         color:#ffffff;}
.gradio-container{max-width:1024px !important;margin:0 auto}
.card{
   border-radius:18px;
   background:#ffffff0d;
   padding:18px 22px;
   backdrop-filter:blur(6px);
}
.gr-image,.gr-video{border-radius:14px}
.gr-image:hover{box-shadow:0 0 0 4px #a855f7}
"""

# ----------------------------------------------------------
# 9 · 🖼️ Demo UI
# ----------------------------------------------------------
example_gallery = [
    ['./IP_Composer/assets/patterns/base.jpg', "Patterns demo"],
    ['./IP_Composer/assets/flowers/base.png',  "Flowers demo"],
    ['./IP_Composer/assets/materials/base.png',"Material demo"],
]

with gr.Blocks(css=css, theme=demo_theme) as demo:
    # ─── Header
    gr.Markdown("<div id='header'>🌅 IP-Composer&nbsp;"
                "<sup style='font-size:14px'>SDXL</sup></div>")

    # ─── States for custom concepts
    concpet_from_file_1 = gr.State()
    concpet_from_file_2 = gr.State()
    concpet_from_file_3 = gr.State()
    use_concpet_from_file_1 = gr.State()
    use_concpet_from_file_2 = gr.State()
    use_concpet_from_file_3 = gr.State()

    # ─── Main layout
    with gr.Row(equal_height=True):
        # Base image card
        with gr.Column(elem_classes="card"):
            base_image = gr.Image(label="Base Image (Required)",
                                  type="numpy", height=400, width=400)

        # Concept cards (1 · 2 · 3)
        for idx in (1, 2, 3):
            with gr.Column(elem_classes="card"):
                locals()[f"concept_image{idx}"] = gr.Image(
                    label=f"Concept Image {idx}" if idx == 1 else f"Concept {idx} (Optional)",
                    type="numpy", height=400, width=400
                )
                locals()[f"concept_name{idx}"] = gr.Dropdown(
                    concept_options, label=f"Concept {idx}",
                    value=None if idx != 1 else "age",
                    info="Pick concept type"
                )
                with gr.Accordion("💡 Or use a new concept 👇", open=False):
                    gr.Markdown("1. Upload a file with **>100** text variations<br>"
                                "2. Tip: Ask an LLM to list variations.")
                    if idx == 1:
                        concept_file_1 = gr.File("Concept variations",
                                                 file_types=["text"])
                    elif idx == 2:
                        concept_file_2 = gr.File("Concept variations",
                                                 file_types=["text"])
                    else:
                        concept_file_3 = gr.File("Concept variations",
                                                 file_types=["text"])

    # ─── Advanced options card (full width)
    with gr.Column(elem_classes="card"):
        with gr.Accordion("⚙️ Advanced options", open=False):
            prompt = gr.Textbox(label="Guidance Prompt (Optional)",
                                placeholder="Optional text prompt to guide generation")
            num_inference_steps = gr.Slider(1, 50, value=30, step=1,
                                            label="Num steps")
            with gr.Row():
                scale = gr.Slider(0.1, 2.0, value=1.0, step=0.1, label="Scale")
                randomize_seed = gr.Checkbox(True, label="Randomize seed")
                seed = gr.Number(value=0, label="Seed", precision=0)
            gr.Markdown("If a concept is not showing enough, **increase rank** ⬇️")
            with gr.Row():
                rank1 = gr.Slider(1, 150, value=30, step=1, label="Rank concept 1")
                rank2 = gr.Slider(1, 150, value=30, step=1, label="Rank concept 2")
                rank3 = gr.Slider(1, 150, value=30, step=1, label="Rank concept 3")

    # ─── Output & Generate button
    with gr.Column(elem_classes="card"):
        output_image = gr.Image(show_label=False, height=480)
        submit_btn = gr.Button("🔮 Generate", variant="primary", size="lg")

    # ─── Ready-made Gallery
    gr.Markdown("### 🔥 Ready-made examples")
    gr.Gallery(example_gallery, label="클릭해서 미리보기",
               columns=[3], height="auto")

    # ─── Example usage (kept for quick test)
    gr.Examples(
        examples,
        inputs=[base_image, concept_image1, concept_name1,
                concept_image2, concept_name2,
                concept_image3, concept_name3,
                rank1, rank2, rank3,
                prompt, scale, seed, num_inference_steps],
        outputs=[output_image],
        fn=generate_examples,
        cache_examples=False
    )

    # ─── File upload triggers
    concept_file_1.upload(get_text_embeddings, [concept_file_1],
                          [concpet_from_file_1, use_concpet_from_file_1])
    concept_file_2.upload(get_text_embeddings, [concept_file_2],
                          [concpet_from_file_2, use_concpet_from_file_2])
    concept_file_3.upload(get_text_embeddings, [concept_file_3],
                          [concpet_from_file_3, use_concpet_from_file_3])
    concept_file_1.delete(lambda x: False, [concept_file_1],
                          [use_concpet_from_file_1])
    concept_file_2.delete(lambda x: False, [concept_file_2],
                          [use_concpet_from_file_2])
    concept_file_3.delete(lambda x: False, [concept_file_3],
                          [use_concpet_from_file_3])

    # ─── Dropdown auto-rank
    concept_name1.select(change_rank_default, [concept_name1], [rank1])
    concept_name2.select(change_rank_default, [concept_name2], [rank2])
    concept_name3.select(change_rank_default, [concept_name3], [rank3])

    # ─── Auto-match concept type on image upload
    concept_image1.upload(match_image_to_concept, [concept_image1], [concept_name1])
    concept_image2.upload(match_image_to_concept, [concept_image2], [concept_name2])
    concept_image3.upload(match_image_to_concept, [concept_image3], [concept_name3])

    # ─── Generate click chain
    submit_btn.click(randomize_seed_fn, [seed, randomize_seed], seed) \
              .then(process_and_display,
                    [base_image, concept_image1, concept_name1,
                     concept_image2, concept_name2,
                     concept_image3, concept_name3,
                     rank1, rank2, rank3,
                     prompt, scale, seed, num_inference_steps,
                     concpet_from_file_1, concpet_from_file_2, concpet_from_file_3,
                     use_concpet_from_file_1, use_concpet_from_file_2, use_concpet_from_file_3],
                    [output_image])

# ─────────────────────────────
# 10 · Launch
# ─────────────────────────────
if __name__ == "__main__":
    demo.launch()