Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,100 Bytes
2608108 e146909 c20a702 e146909 c20a702 e146909 2608108 c20a702 2608108 f41b58f c20a702 e146909 2608108 e146909 c20a702 e146909 2608108 e146909 c20a702 e146909 2608108 e146909 2608108 e146909 2608108 e146909 c20a702 e146909 2608108 e146909 2608108 e146909 c20a702 e146909 2608108 e146909 c0e7580 e146909 2608108 e146909 47154ea e96f400 47154ea 2608108 47154ea e146909 2608108 c6f871c c0e7580 c20a702 e146909 2608108 e146909 8bb102d 2608108 8bb102d e146909 2608108 e146909 2608108 8bb102d 42824a3 2608108 42824a3 e146909 42824a3 2608108 c6f871c 2608108 a8ca9e4 2608108 a8ca9e4 2608108 a8ca9e4 2608108 a8ca9e4 2608108 a8ca9e4 2608108 f41b58f c20a702 2608108 f41b58f c20a702 2608108 c20a702 2608108 e146909 2608108 e146909 c20a702 e146909 2608108 e146909 2608108 c20a702 e146909 2608108 43c9440 e146909 2608108 c20a702 e146909 2608108 43c9440 e146909 c20a702 e146909 62151c8 e146909 43c9440 e146909 c20a702 e146909 c20a702 2608108 c20a702 2608108 c20a702 43c9440 2608108 43c9440 c20a702 2608108 c20a702 e6f9650 c20a702 e6f9650 0292eb7 e146909 2608108 c20a702 2608108 e146909 2608108 e146909 2608108 42824a3 e146909 42824a3 2608108 e146909 f6b6dd7 e146909 42824a3 355ac45 e146909 2608108 e146909 2608108 e146909 355ac45 e146909 2608108 e146909 2608108 355ac45 e146909 2608108 e146909 2608108 e146909 2608108 e146909 2608108 e146909 2608108 e146909 2608108 e146909 2608108 355ac45 e146909 2608108 e146909 2608108 e146909 2608108 e146909 2608108 355ac45 e146909 7ad4e34 e146909 8bb102d 2608108 8bb102d 2608108 e146909 2608108 e146909 2608108 e146909 2608108 e146909 2608108 e146909 c90aa74 e146909 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 |
import os, json, random, gc
import numpy as np
import torch
from PIL import Image
import gradio as gr
from gradio.themes import Soft
from diffusers import StableDiffusionXLPipeline
import open_clip
from huggingface_hub import hf_hub_download
from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL
from IP_Composer.perform_swap import (
compute_dataset_embeds_svd,
get_modified_images_embeds_composition,
)
from IP_Composer.generate_text_embeddings import (
load_descriptions,
generate_embeddings,
)
import spaces
# ─────────────────────────────
# 1 · Device
# ─────────────────────────────
device = "cuda" if torch.cuda.is_available() else "cpu"
# ─────────────────────────────
# 2 · Stable-Diffusion XL
# ─────────────────────────────
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(
base_model_path,
torch_dtype=torch.float16,
add_watermarker=False,
)
# ─────────────────────────────
# 3 · IP-Adapter
# ─────────────────────────────
image_encoder_repo = "h94/IP-Adapter"
image_encoder_subfolder = "models/image_encoder"
ip_ckpt = hf_hub_download(
"h94/IP-Adapter", subfolder="sdxl_models", filename="ip-adapter_sdxl_vit-h.bin"
)
ip_model = IPAdapterXL(
pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device
)
# ─────────────────────────────
# 4 · CLIP
# ─────────────────────────────
clip_model, _, preprocess = open_clip.create_model_and_transforms(
"hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
)
clip_model.to(device)
tokenizer = open_clip.get_tokenizer(
"hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
)
# ─────────────────────────────
# 5 · Concept maps
# ─────────────────────────────
CONCEPTS_MAP = {
"age": "age_descriptions.npy",
"animal fur": "fur_descriptions.npy",
"dogs": "dog_descriptions.npy",
"emotions": "emotion_descriptions.npy",
"flowers": "flower_descriptions.npy",
"fruit/vegtable": "fruit_vegetable_descriptions.npy",
"outfit type": "outfit_descriptions.npy",
"outfit pattern (including color)": "outfit_pattern_descriptions.npy",
"patterns": "pattern_descriptions.npy",
"patterns (including color)": "pattern_descriptions_with_colors.npy",
"vehicle": "vehicle_descriptions.npy",
"daytime": "times_of_day_descriptions.npy",
"pose": "person_poses_descriptions.npy",
"season": "season_descriptions.npy",
"material": "material_descriptions_with_gems.npy",
}
RANKS_MAP = {
"age": 30,
"animal fur": 80,
"dogs": 30,
"emotions": 30,
"flowers": 30,
"fruit/vegtable": 30,
"outfit type": 30,
"outfit pattern (including color)": 80,
"patterns": 80,
"patterns (including color)": 80,
"vehicle": 30,
"daytime": 30,
"pose": 30,
"season": 30,
"material": 80,
}
concept_options = list(CONCEPTS_MAP.keys())
# ─────────────────────────────
# 6 · Example tuples (base_img, c1_img, …)
# ─────────────────────────────
examples = [
[
"./IP_Composer/assets/patterns/base.jpg",
"./IP_Composer/assets/patterns/pattern.png",
"patterns (including color)",
None,
None,
None,
None,
80,
30,
30,
None,
1.0,
0,
30,
],
[
"./IP_Composer/assets/flowers/base.png",
"./IP_Composer/assets/flowers/concept.png",
"flowers",
None,
None,
None,
None,
30,
30,
30,
None,
1.0,
0,
30,
],
[
"./IP_Composer/assets/materials/base.png",
"./IP_Composer/assets/materials/concept.jpg",
"material",
None,
None,
None,
None,
80,
30,
30,
None,
1.0,
0,
30,
],
]
# ----------------------------------------------------------
# 7 · Utility functions
# ----------------------------------------------------------
def generate_examples(
base_image,
concept_image1,
concept_name1,
concept_image2,
concept_name2,
concept_image3,
concept_name3,
rank1,
rank2,
rank3,
prompt,
scale,
seed,
num_inference_steps,
):
return process_and_display(
base_image,
concept_image1,
concept_name1,
concept_image2,
concept_name2,
concept_image3,
concept_name3,
rank1,
rank2,
rank3,
prompt,
scale,
seed,
num_inference_steps,
)
MAX_SEED = np.iinfo(np.int32).max
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
return random.randint(0, MAX_SEED) if randomize_seed else seed
def change_rank_default(concept_name):
return RANKS_MAP.get(concept_name, 30)
@spaces.GPU
def match_image_to_concept(image):
if image is None:
return None
img_pil = Image.fromarray(image).convert("RGB")
img_embed = get_image_embeds(img_pil, clip_model, preprocess, device)
sims = {}
for cname, cfile in CONCEPTS_MAP.items():
try:
with open(f"./IP_Composer/text_embeddings/{cfile}", "rb") as f:
embeds = np.load(f)
scores = []
for e in embeds:
s = np.dot(
img_embed.flatten() / np.linalg.norm(img_embed),
e.flatten() / np.linalg.norm(e),
)
scores.append(s)
scores.sort(reverse=True)
sims[cname] = np.mean(scores[:5])
except Exception as e:
print(cname, "error:", e)
if sims:
best = max(sims, key=sims.get)
gr.Info(f"Image automatically matched to concept: {best}")
return best
return None
@spaces.GPU
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
image = preproc(pil_image)[np.newaxis, :, :, :]
with torch.no_grad():
embeds = model.encode_image(image.to(dev))
return embeds.cpu().detach().numpy()
@spaces.GPU
def process_images(
base_image,
concept_image1,
concept_name1,
concept_image2=None,
concept_name2=None,
concept_image3=None,
concept_name3=None,
rank1=10,
rank2=10,
rank3=10,
prompt=None,
scale=1.0,
seed=420,
num_inference_steps=50,
concpet_from_file_1=None,
concpet_from_file_2=None,
concpet_from_file_3=None,
use_concpet_from_file_1=False,
use_concpet_from_file_2=False,
use_concpet_from_file_3=False,
):
base_pil = Image.fromarray(base_image).convert("RGB")
base_embed = get_image_embeds(base_pil, clip_model, preprocess, device)
concept_images, concept_descs, ranks = [], [], []
skip = [False, False, False]
# concept 1
if concept_image1 is None:
return None, "Please upload at least one concept image"
concept_images.append(concept_image1)
if use_concpet_from_file_1 and concpet_from_file_1 is not None:
concept_descs.append(concpet_from_file_1)
skip[0] = True
else:
concept_descs.append(CONCEPTS_MAP[concept_name1])
ranks.append(rank1)
# concept 2
if concept_image2 is not None:
concept_images.append(concept_image2)
if use_concpet_from_file_2 and concpet_from_file_2 is not None:
concept_descs.append(concpet_from_file_2)
skip[1] = True
else:
concept_descs.append(CONCEPTS_MAP[concept_name2])
ranks.append(rank2)
# concept 3
if concept_image3 is not None:
concept_images.append(concept_image3)
if use_concpet_from_file_3 and concpet_from_file_3 is not None:
concept_descs.append(concpet_from_file_3)
skip[2] = True
else:
concept_descs.append(CONCEPTS_MAP[concept_name3])
ranks.append(rank3)
concept_embeds, proj_mats = [], []
for i, concept in enumerate(concept_descs):
img_pil = Image.fromarray(concept_images[i]).convert("RGB")
concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
if skip[i]:
all_embeds = concept
else:
with open(f"./IP_Composer/text_embeddings/{concept}", "rb") as f:
all_embeds = np.load(f)
proj_mats.append(compute_dataset_embeds_svd(all_embeds, ranks[i]))
projections_data = [
{"embed": e, "projection_matrix": p}
for e, p in zip(concept_embeds, proj_mats)
]
modified = get_modified_images_embeds_composition(
base_embed,
projections_data,
ip_model,
prompt=prompt,
scale=scale,
num_samples=1,
seed=seed,
num_inference_steps=num_inference_steps,
)
return modified[0]
@spaces.GPU
def get_text_embeddings(concept_file):
descs = load_descriptions(concept_file)
embeds = generate_embeddings(descs, clip_model, tokenizer, device, batch_size=100)
return embeds, True
def process_and_display(
base_image,
concept_image1,
concept_name1="age",
concept_image2=None,
concept_name2=None,
concept_image3=None,
concept_name3=None,
rank1=30,
rank2=30,
rank3=30,
prompt=None,
scale=1.0,
seed=0,
num_inference_steps=50,
concpet_from_file_1=None,
concpet_from_file_2=None,
concpet_from_file_3=None,
use_concpet_from_file_1=False,
use_concpet_from_file_2=False,
use_concpet_from_file_3=False,
):
if base_image is None:
raise gr.Error("Please upload a base image")
if concept_image1 is None:
raise gr.Error("Choose at least one concept image")
return process_images(
base_image,
concept_image1,
concept_name1,
concept_image2,
concept_name2,
concept_image3,
concept_name3,
rank1,
rank2,
rank3,
prompt,
scale,
seed,
num_inference_steps,
concpet_from_file_1,
concpet_from_file_2,
concpet_from_file_3,
use_concpet_from_file_1,
use_concpet_from_file_2,
use_concpet_from_file_3,
)
# ----------------------------------------------------------
# 8 · THEME & CSS
# ----------------------------------------------------------
demo_theme = Soft(primary_hue="purple", font=[gr.themes.GoogleFont("Inter")])
css = """
body{
background:#0f0c29;
background:linear-gradient(135deg,#0f0c29,#302b63,#24243e);
}
#header{
text-align:center;
padding:24px 0 8px;
font-weight:700;
font-size:2.1rem;
color:#ffffff;
}
.gradio-container{max-width:1024px !important;margin:0 auto}
.card{
border-radius:18px;
background:#ffffff0d;
padding:18px 22px;
backdrop-filter:blur(6px);
}
.gr-image,.gr-video{border-radius:14px}
.gr-image:hover{box-shadow:0 0 0 4px #a855f7}
"""
# ----------------------------------------------------------
# 9 · UI
# ----------------------------------------------------------
example_gallery = [
["./IP_Composer/assets/patterns/base.jpg", "Patterns demo"],
["./IP_Composer/assets/flowers/base.png", "Flowers demo"],
["./IP_Composer/assets/materials/base.png", "Material demo"],
]
with gr.Blocks(css=css, theme=demo_theme) as demo:
gr.Markdown(
"<div id='header'>🌅 IP-Composer "
"<sup style='font-size:14px'>SDXL</sup></div>"
)
concpet_from_file_1, concpet_from_file_2, concpet_from_file_3 = (
gr.State(),
gr.State(),
gr.State(),
)
use_concpet_from_file_1, use_concpet_from_file_2, use_concpet_from_file_3 = (
gr.State(),
gr.State(),
gr.State(),
)
with gr.Row(equal_height=True):
with gr.Column(elem_classes="card"):
base_image = gr.Image(
label="Base Image (Required)", type="numpy", height=400, width=400
)
for idx in (1, 2, 3):
with gr.Column(elem_classes="card"):
locals()[f"concept_image{idx}"] = gr.Image(
label=f"Concept Image {idx}"
if idx == 1
else f"Concept {idx} (Optional)",
type="numpy",
height=400,
width=400,
)
locals()[f"concept_name{idx}"] = gr.Dropdown(
concept_options,
label=f"Concept {idx}",
value=None if idx != 1 else "age",
info="Pick concept type",
)
with gr.Accordion("💡 Or use a new concept 👇", open=False):
gr.Markdown(
"1. Upload a file with **>100** text variations<br>"
"2. Tip: Ask an LLM to list variations."
)
if idx == 1:
concept_file_1 = gr.File(
label="Concept variations", file_types=["text"]
)
elif idx == 2:
concept_file_2 = gr.File(
label="Concept variations", file_types=["text"]
)
else:
concept_file_3 = gr.File(
label="Concept variations", file_types=["text"]
)
with gr.Column(elem_classes="card"):
with gr.Accordion("⚙️ Advanced options", open=False):
prompt = gr.Textbox(
label="Guidance Prompt (Optional)",
placeholder="Optional text prompt to guide generation",
)
num_inference_steps = gr.Slider(1, 50, 30, step=1, label="Num steps")
with gr.Row():
scale = gr.Slider(0.1, 2.0, 1.0, step=0.1, label="Scale")
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Number(value=0, label="Seed", precision=0)
gr.Markdown(
"If a concept is not showing enough, **increase rank** ⬇️"
)
with gr.Row():
rank1 = gr.Slider(1, 150, 30, step=1, label="Rank concept 1")
rank2 = gr.Slider(1, 150, 30, step=1, label="Rank concept 2")
rank3 = gr.Slider(1, 150, 30, step=1, label="Rank concept 3")
with gr.Column(elem_classes="card"):
output_image = gr.Image(show_label=False, height=480)
submit_btn = gr.Button("🔮 Generate", variant="primary", size="lg")
gr.Markdown("### 🔥 Ready-made examples")
gr.Gallery(example_gallery, label="Preview", columns=[3], height="auto")
gr.Examples(
examples,
inputs=[
base_image,
concept_image1,
concept_name1,
concept_image2,
concept_name2,
concept_image3,
concept_name3,
rank1,
rank2,
rank3,
prompt,
scale,
seed,
num_inference_steps,
],
outputs=[output_image],
fn=generate_examples,
cache_examples=False,
)
# Upload hooks
concept_file_1.upload(
get_text_embeddings,
[concept_file_1],
[concpet_from_file_1, use_concpet_from_file_1],
)
concept_file_2.upload(
get_text_embeddings,
[concept_file_2],
[concpet_from_file_2, use_concpet_from_file_2],
)
concept_file_3.upload(
get_text_embeddings,
[concept_file_3],
[concpet_from_file_3, use_concpet_from_file_3],
)
concept_file_1.delete(
lambda _: False, [concept_file_1], [use_concpet_from_file_1]
)
concept_file_2.delete(
lambda _: False, [concept_file_2], [use_concpet_from_file_2]
)
concept_file_3.delete(
lambda _: False, [concept_file_3], [use_concpet_from_file_3]
)
# Dropdown auto-rank
concept_name1.select(change_rank_default, [concept_name1], [rank1])
concept_name2.select(change_rank_default, [concept_name2], [rank2])
concept_name3.select(change_rank_default, [concept_name3], [rank3])
# Auto-match on upload
concept_image1.upload(match_image_to_concept, [concept_image1], [concept_name1])
concept_image2.upload(match_image_to_concept, [concept_image2], [concept_name2])
concept_image3.upload(match_image_to_concept, [concept_image3], [concept_name3])
# Generate chain
submit_btn.click(randomize_seed_fn, [seed, randomize_seed], seed).then(
process_and_display,
[
base_image,
concept_image1,
concept_name1,
concept_image2,
concept_name2,
concept_image3,
concept_name3,
rank1,
rank2,
rank3,
prompt,
scale,
seed,
num_inference_steps,
concpet_from_file_1,
concpet_from_file_2,
concpet_from_file_3,
use_concpet_from_file_1,
use_concpet_from_file_2,
use_concpet_from_file_3,
],
[output_image],
)
# ─────────────────────────────
# 10 · Launch
# ─────────────────────────────
if __name__ == "__main__":
demo.launch()
|