File size: 18,100 Bytes
2608108
e146909
c20a702
e146909
c20a702
e146909
2608108
c20a702
 
 
 
2608108
 
 
 
 
 
 
 
f41b58f
c20a702
e146909
2608108
e146909
c20a702
 
e146909
2608108
e146909
c20a702
 
 
 
 
 
 
e146909
2608108
e146909
2608108
 
e146909
2608108
 
 
 
e146909
c20a702
e146909
2608108
e146909
 
2608108
e146909
c20a702
e146909
2608108
e146909
c0e7580
e146909
2608108
e146909
 
47154ea
e96f400
47154ea
 
 
 
 
 
 
 
 
 
 
 
2608108
47154ea
e146909
2608108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6f871c
c0e7580
c20a702
e146909
2608108
e146909
8bb102d
2608108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb102d
 
e146909
2608108
e146909
2608108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb102d
42824a3
2608108
 
42824a3
e146909
42824a3
2608108
 
c6f871c
 
2608108
a8ca9e4
 
 
 
2608108
a8ca9e4
2608108
 
a8ca9e4
2608108
 
 
 
 
 
 
 
 
 
 
a8ca9e4
2608108
 
 
 
 
a8ca9e4
 
2608108
f41b58f
c20a702
 
 
 
 
 
2608108
f41b58f
c20a702
2608108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20a702
2608108
e146909
 
 
 
 
2608108
e146909
c20a702
e146909
 
2608108
 
e146909
 
 
 
2608108
c20a702
 
e146909
2608108
 
43c9440
e146909
 
 
2608108
c20a702
 
e146909
2608108
 
43c9440
e146909
c20a702
e146909
 
 
62151c8
 
e146909
 
43c9440
e146909
 
 
 
c20a702
e146909
 
c20a702
2608108
 
 
 
 
 
 
 
 
c20a702
2608108
 
c20a702
43c9440
 
2608108
 
 
 
43c9440
c20a702
2608108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20a702
 
e6f9650
c20a702
e6f9650
0292eb7
e146909
2608108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c20a702
 
2608108
e146909
2608108
e146909
2608108
42824a3
e146909
 
 
42824a3
2608108
 
 
 
 
 
 
e146909
 
 
 
 
 
f6b6dd7
e146909
 
42824a3
355ac45
e146909
2608108
e146909
 
2608108
 
 
e146909
355ac45
e146909
2608108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e146909
 
2608108
 
 
355ac45
e146909
 
 
2608108
 
 
 
 
 
e146909
 
2608108
 
e146909
2608108
e146909
 
2608108
 
 
 
e146909
2608108
 
 
e146909
2608108
 
 
e146909
2608108
 
 
355ac45
e146909
 
2608108
 
 
 
 
e146909
2608108
e146909
 
2608108
 
 
e146909
2608108
 
 
355ac45
e146909
 
 
 
 
7ad4e34
e146909
 
8bb102d
2608108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bb102d
 
2608108
e146909
 
2608108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e146909
 
 
 
2608108
e146909
 
 
 
2608108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e146909
 
2608108
e146909
c90aa74
e146909
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595

import os, json, random, gc
import numpy as np
import torch
from PIL import Image
import gradio as gr
from gradio.themes import Soft
from diffusers import StableDiffusionXLPipeline
import open_clip
from huggingface_hub import hf_hub_download
from IP_Composer.IP_Adapter.ip_adapter import IPAdapterXL
from IP_Composer.perform_swap import (
    compute_dataset_embeds_svd,
    get_modified_images_embeds_composition,
)
from IP_Composer.generate_text_embeddings import (
    load_descriptions,
    generate_embeddings,
)
import spaces

# ─────────────────────────────
# 1 · Device
# ─────────────────────────────
device = "cuda" if torch.cuda.is_available() else "cpu"

# ─────────────────────────────
# 2 · Stable-Diffusion XL
# ─────────────────────────────
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0"
pipe = StableDiffusionXLPipeline.from_pretrained(
    base_model_path,
    torch_dtype=torch.float16,
    add_watermarker=False,
)

# ─────────────────────────────
# 3 · IP-Adapter
# ─────────────────────────────
image_encoder_repo = "h94/IP-Adapter"
image_encoder_subfolder = "models/image_encoder"
ip_ckpt = hf_hub_download(
    "h94/IP-Adapter", subfolder="sdxl_models", filename="ip-adapter_sdxl_vit-h.bin"
)
ip_model = IPAdapterXL(
    pipe, image_encoder_repo, image_encoder_subfolder, ip_ckpt, device
)

# ─────────────────────────────
# 4 · CLIP
# ─────────────────────────────
clip_model, _, preprocess = open_clip.create_model_and_transforms(
    "hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
)
clip_model.to(device)
tokenizer = open_clip.get_tokenizer(
    "hf-hub:laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
)

# ─────────────────────────────
# 5 · Concept maps
# ─────────────────────────────
CONCEPTS_MAP = {
    "age": "age_descriptions.npy",
    "animal fur": "fur_descriptions.npy",
    "dogs": "dog_descriptions.npy",
    "emotions": "emotion_descriptions.npy",
    "flowers": "flower_descriptions.npy",
    "fruit/vegtable": "fruit_vegetable_descriptions.npy",
    "outfit type": "outfit_descriptions.npy",
    "outfit pattern (including color)": "outfit_pattern_descriptions.npy",
    "patterns": "pattern_descriptions.npy",
    "patterns (including color)": "pattern_descriptions_with_colors.npy",
    "vehicle": "vehicle_descriptions.npy",
    "daytime": "times_of_day_descriptions.npy",
    "pose": "person_poses_descriptions.npy",
    "season": "season_descriptions.npy",
    "material": "material_descriptions_with_gems.npy",
}
RANKS_MAP = {
    "age": 30,
    "animal fur": 80,
    "dogs": 30,
    "emotions": 30,
    "flowers": 30,
    "fruit/vegtable": 30,
    "outfit type": 30,
    "outfit pattern (including color)": 80,
    "patterns": 80,
    "patterns (including color)": 80,
    "vehicle": 30,
    "daytime": 30,
    "pose": 30,
    "season": 30,
    "material": 80,
}
concept_options = list(CONCEPTS_MAP.keys())

# ─────────────────────────────
# 6 · Example tuples (base_img, c1_img, …)
# ─────────────────────────────
examples = [
    [
        "./IP_Composer/assets/patterns/base.jpg",
        "./IP_Composer/assets/patterns/pattern.png",
        "patterns (including color)",
        None,
        None,
        None,
        None,
        80,
        30,
        30,
        None,
        1.0,
        0,
        30,
    ],
    [
        "./IP_Composer/assets/flowers/base.png",
        "./IP_Composer/assets/flowers/concept.png",
        "flowers",
        None,
        None,
        None,
        None,
        30,
        30,
        30,
        None,
        1.0,
        0,
        30,
    ],
    [
        "./IP_Composer/assets/materials/base.png",
        "./IP_Composer/assets/materials/concept.jpg",
        "material",
        None,
        None,
        None,
        None,
        80,
        30,
        30,
        None,
        1.0,
        0,
        30,
    ],
]

# ----------------------------------------------------------
# 7 · Utility functions
# ----------------------------------------------------------
def generate_examples(
    base_image,
    concept_image1,
    concept_name1,
    concept_image2,
    concept_name2,
    concept_image3,
    concept_name3,
    rank1,
    rank2,
    rank3,
    prompt,
    scale,
    seed,
    num_inference_steps,
):
    return process_and_display(
        base_image,
        concept_image1,
        concept_name1,
        concept_image2,
        concept_name2,
        concept_image3,
        concept_name3,
        rank1,
        rank2,
        rank3,
        prompt,
        scale,
        seed,
        num_inference_steps,
    )


MAX_SEED = np.iinfo(np.int32).max


def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    return random.randint(0, MAX_SEED) if randomize_seed else seed


def change_rank_default(concept_name):
    return RANKS_MAP.get(concept_name, 30)


@spaces.GPU
def match_image_to_concept(image):
    if image is None:
        return None
    img_pil = Image.fromarray(image).convert("RGB")
    img_embed = get_image_embeds(img_pil, clip_model, preprocess, device)
    sims = {}
    for cname, cfile in CONCEPTS_MAP.items():
        try:
            with open(f"./IP_Composer/text_embeddings/{cfile}", "rb") as f:
                embeds = np.load(f)
            scores = []
            for e in embeds:
                s = np.dot(
                    img_embed.flatten() / np.linalg.norm(img_embed),
                    e.flatten() / np.linalg.norm(e),
                )
                scores.append(s)
            scores.sort(reverse=True)
            sims[cname] = np.mean(scores[:5])
        except Exception as e:
            print(cname, "error:", e)
    if sims:
        best = max(sims, key=sims.get)
        gr.Info(f"Image automatically matched to concept: {best}")
        return best
    return None


@spaces.GPU
def get_image_embeds(pil_image, model=clip_model, preproc=preprocess, dev=device):
    image = preproc(pil_image)[np.newaxis, :, :, :]
    with torch.no_grad():
        embeds = model.encode_image(image.to(dev))
    return embeds.cpu().detach().numpy()


@spaces.GPU
def process_images(
    base_image,
    concept_image1,
    concept_name1,
    concept_image2=None,
    concept_name2=None,
    concept_image3=None,
    concept_name3=None,
    rank1=10,
    rank2=10,
    rank3=10,
    prompt=None,
    scale=1.0,
    seed=420,
    num_inference_steps=50,
    concpet_from_file_1=None,
    concpet_from_file_2=None,
    concpet_from_file_3=None,
    use_concpet_from_file_1=False,
    use_concpet_from_file_2=False,
    use_concpet_from_file_3=False,
):
    base_pil = Image.fromarray(base_image).convert("RGB")
    base_embed = get_image_embeds(base_pil, clip_model, preprocess, device)

    concept_images, concept_descs, ranks = [], [], []
    skip = [False, False, False]

    # concept 1
    if concept_image1 is None:
        return None, "Please upload at least one concept image"
    concept_images.append(concept_image1)
    if use_concpet_from_file_1 and concpet_from_file_1 is not None:
        concept_descs.append(concpet_from_file_1)
        skip[0] = True
    else:
        concept_descs.append(CONCEPTS_MAP[concept_name1])
    ranks.append(rank1)

    # concept 2
    if concept_image2 is not None:
        concept_images.append(concept_image2)
        if use_concpet_from_file_2 and concpet_from_file_2 is not None:
            concept_descs.append(concpet_from_file_2)
            skip[1] = True
        else:
            concept_descs.append(CONCEPTS_MAP[concept_name2])
        ranks.append(rank2)

    # concept 3
    if concept_image3 is not None:
        concept_images.append(concept_image3)
        if use_concpet_from_file_3 and concpet_from_file_3 is not None:
            concept_descs.append(concpet_from_file_3)
            skip[2] = True
        else:
            concept_descs.append(CONCEPTS_MAP[concept_name3])
        ranks.append(rank3)

    concept_embeds, proj_mats = [], []
    for i, concept in enumerate(concept_descs):
        img_pil = Image.fromarray(concept_images[i]).convert("RGB")
        concept_embeds.append(get_image_embeds(img_pil, clip_model, preprocess, device))
        if skip[i]:
            all_embeds = concept
        else:
            with open(f"./IP_Composer/text_embeddings/{concept}", "rb") as f:
                all_embeds = np.load(f)
        proj_mats.append(compute_dataset_embeds_svd(all_embeds, ranks[i]))

    projections_data = [
        {"embed": e, "projection_matrix": p}
        for e, p in zip(concept_embeds, proj_mats)
    ]
    modified = get_modified_images_embeds_composition(
        base_embed,
        projections_data,
        ip_model,
        prompt=prompt,
        scale=scale,
        num_samples=1,
        seed=seed,
        num_inference_steps=num_inference_steps,
    )
    return modified[0]


@spaces.GPU
def get_text_embeddings(concept_file):
    descs = load_descriptions(concept_file)
    embeds = generate_embeddings(descs, clip_model, tokenizer, device, batch_size=100)
    return embeds, True


def process_and_display(
    base_image,
    concept_image1,
    concept_name1="age",
    concept_image2=None,
    concept_name2=None,
    concept_image3=None,
    concept_name3=None,
    rank1=30,
    rank2=30,
    rank3=30,
    prompt=None,
    scale=1.0,
    seed=0,
    num_inference_steps=50,
    concpet_from_file_1=None,
    concpet_from_file_2=None,
    concpet_from_file_3=None,
    use_concpet_from_file_1=False,
    use_concpet_from_file_2=False,
    use_concpet_from_file_3=False,
):
    if base_image is None:
        raise gr.Error("Please upload a base image")
    if concept_image1 is None:
        raise gr.Error("Choose at least one concept image")

    return process_images(
        base_image,
        concept_image1,
        concept_name1,
        concept_image2,
        concept_name2,
        concept_image3,
        concept_name3,
        rank1,
        rank2,
        rank3,
        prompt,
        scale,
        seed,
        num_inference_steps,
        concpet_from_file_1,
        concpet_from_file_2,
        concpet_from_file_3,
        use_concpet_from_file_1,
        use_concpet_from_file_2,
        use_concpet_from_file_3,
    )


# ----------------------------------------------------------
# 8 · THEME & CSS
# ----------------------------------------------------------
demo_theme = Soft(primary_hue="purple", font=[gr.themes.GoogleFont("Inter")])
css = """
body{
   background:#0f0c29;
   background:linear-gradient(135deg,#0f0c29,#302b63,#24243e);
}
#header{
   text-align:center;
   padding:24px 0 8px;
   font-weight:700;
   font-size:2.1rem;
   color:#ffffff;
}
.gradio-container{max-width:1024px !important;margin:0 auto}
.card{
   border-radius:18px;
   background:#ffffff0d;
   padding:18px 22px;
   backdrop-filter:blur(6px);
}
.gr-image,.gr-video{border-radius:14px}
.gr-image:hover{box-shadow:0 0 0 4px #a855f7}
"""

# ----------------------------------------------------------
# 9 · UI
# ----------------------------------------------------------
example_gallery = [
    ["./IP_Composer/assets/patterns/base.jpg", "Patterns demo"],
    ["./IP_Composer/assets/flowers/base.png", "Flowers demo"],
    ["./IP_Composer/assets/materials/base.png", "Material demo"],
]

with gr.Blocks(css=css, theme=demo_theme) as demo:
    gr.Markdown(
        "<div id='header'>🌅 IP-Composer&nbsp;"
        "<sup style='font-size:14px'>SDXL</sup></div>"
    )

    concpet_from_file_1, concpet_from_file_2, concpet_from_file_3 = (
        gr.State(),
        gr.State(),
        gr.State(),
    )
    use_concpet_from_file_1, use_concpet_from_file_2, use_concpet_from_file_3 = (
        gr.State(),
        gr.State(),
        gr.State(),
    )

    with gr.Row(equal_height=True):
        with gr.Column(elem_classes="card"):
            base_image = gr.Image(
                label="Base Image (Required)", type="numpy", height=400, width=400
            )

        for idx in (1, 2, 3):
            with gr.Column(elem_classes="card"):
                locals()[f"concept_image{idx}"] = gr.Image(
                    label=f"Concept Image {idx}"
                    if idx == 1
                    else f"Concept {idx} (Optional)",
                    type="numpy",
                    height=400,
                    width=400,
                )
                locals()[f"concept_name{idx}"] = gr.Dropdown(
                    concept_options,
                    label=f"Concept {idx}",
                    value=None if idx != 1 else "age",
                    info="Pick concept type",
                )
                with gr.Accordion("💡 Or use a new concept 👇", open=False):
                    gr.Markdown(
                        "1. Upload a file with **>100** text variations<br>"
                        "2. Tip: Ask an LLM to list variations."
                    )
                    if idx == 1:
                        concept_file_1 = gr.File(
                            label="Concept variations", file_types=["text"]
                        )
                    elif idx == 2:
                        concept_file_2 = gr.File(
                            label="Concept variations", file_types=["text"]
                        )
                    else:
                        concept_file_3 = gr.File(
                            label="Concept variations", file_types=["text"]
                        )

    with gr.Column(elem_classes="card"):
        with gr.Accordion("⚙️ Advanced options", open=False):
            prompt = gr.Textbox(
                label="Guidance Prompt (Optional)",
                placeholder="Optional text prompt to guide generation",
            )
            num_inference_steps = gr.Slider(1, 50, 30, step=1, label="Num steps")
            with gr.Row():
                scale = gr.Slider(0.1, 2.0, 1.0, step=0.1, label="Scale")
                randomize_seed = gr.Checkbox(True, label="Randomize seed")
                seed = gr.Number(value=0, label="Seed", precision=0)
            gr.Markdown(
                "If a concept is not showing enough, **increase rank** ⬇️"
            )
            with gr.Row():
                rank1 = gr.Slider(1, 150, 30, step=1, label="Rank concept 1")
                rank2 = gr.Slider(1, 150, 30, step=1, label="Rank concept 2")
                rank3 = gr.Slider(1, 150, 30, step=1, label="Rank concept 3")

    with gr.Column(elem_classes="card"):
        output_image = gr.Image(show_label=False, height=480)
        submit_btn = gr.Button("🔮 Generate", variant="primary", size="lg")

    gr.Markdown("### 🔥 Ready-made examples")
    gr.Gallery(example_gallery, label="Preview", columns=[3], height="auto")

    gr.Examples(
        examples,
        inputs=[
            base_image,
            concept_image1,
            concept_name1,
            concept_image2,
            concept_name2,
            concept_image3,
            concept_name3,
            rank1,
            rank2,
            rank3,
            prompt,
            scale,
            seed,
            num_inference_steps,
        ],
        outputs=[output_image],
        fn=generate_examples,
        cache_examples=False,
    )

    # Upload hooks
    concept_file_1.upload(
        get_text_embeddings,
        [concept_file_1],
        [concpet_from_file_1, use_concpet_from_file_1],
    )
    concept_file_2.upload(
        get_text_embeddings,
        [concept_file_2],
        [concpet_from_file_2, use_concpet_from_file_2],
    )
    concept_file_3.upload(
        get_text_embeddings,
        [concept_file_3],
        [concpet_from_file_3, use_concpet_from_file_3],
    )
    concept_file_1.delete(
        lambda _: False, [concept_file_1], [use_concpet_from_file_1]
    )
    concept_file_2.delete(
        lambda _: False, [concept_file_2], [use_concpet_from_file_2]
    )
    concept_file_3.delete(
        lambda _: False, [concept_file_3], [use_concpet_from_file_3]
    )

    # Dropdown auto-rank
    concept_name1.select(change_rank_default, [concept_name1], [rank1])
    concept_name2.select(change_rank_default, [concept_name2], [rank2])
    concept_name3.select(change_rank_default, [concept_name3], [rank3])

    # Auto-match on upload
    concept_image1.upload(match_image_to_concept, [concept_image1], [concept_name1])
    concept_image2.upload(match_image_to_concept, [concept_image2], [concept_name2])
    concept_image3.upload(match_image_to_concept, [concept_image3], [concept_name3])

    # Generate chain
    submit_btn.click(randomize_seed_fn, [seed, randomize_seed], seed).then(
        process_and_display,
        [
            base_image,
            concept_image1,
            concept_name1,
            concept_image2,
            concept_name2,
            concept_image3,
            concept_name3,
            rank1,
            rank2,
            rank3,
            prompt,
            scale,
            seed,
            num_inference_steps,
            concpet_from_file_1,
            concpet_from_file_2,
            concpet_from_file_3,
            use_concpet_from_file_1,
            use_concpet_from_file_2,
            use_concpet_from_file_3,
        ],
        [output_image],
    )

# ─────────────────────────────
# 10 · Launch
# ─────────────────────────────
if __name__ == "__main__":
    demo.launch()